CONTROL OF NEOCLASSICAL TEARING MODES IN DIII–D

by

R.J. LA HAYE

Acknowledgments to
D.A. Humphreys, J. Lohr, T.C. Luce, C.C. Petty, R. Prater, E.J. Strait, J.T. Scoville, S. Günter,* and M.E. Maraschek*

*Max-Planck Institut für PlasmaPhysik, Garching, Germany

Presented at
the 43rd American Physical Society, Division of Plasma Physics Meeting
Long Beach, California

October 29 through November 2, 2001
Comparison of nested surfaces and $m=3$ ($n=2$) tearing mode islands

- Reinforces "seed", a destabilizing effect at high beta

Helically perturbed bootstrap current (Qu and Callen 1985)

- "Seed" island from another MHD instability
- Pressure is flattened in island O-point, but not in X-point
- O-point and X-point J_{bs} differ; $\delta J_{bs} \approx \varepsilon^{1/2} \delta \nabla p/B_\theta \propto \beta_\theta/w$

- Reinforces "seed", a destabilizing effect at high beta
CONTROL OF NEOCLASSICAL TEARING MODES

- Stabilized by replacing “missing” bootstrap current in O-point of island
 - Off-axis radially localized electron cyclotron current drive (ECCD)

- Control is to position peak j_{ECCD} on island
 - Real-time feedback of optimum position
 - Complete $m/n=3/2$ NTM suppression — in presence of continued sawteeth
 - Beta raised after NTM stabilization

- Inhibited by interfering with the fundamental helical harmonic of perturbed pressure
 - Non-resonant helical field of different helicity

- Control is to apply $n = 3$ field from C-Coil
 - $m/n=3/2$ NTM avoided until $n=3$ field turned off
CO-ECCD CAN REPLACE THE “MISSING” BOOTSTRAP CURRENT AND STABILIZE THE NEOCLASSICAL TEARING MODE

\[\frac{\tau_R}{r} \frac{dw}{dt} = \Delta \dot{r} + \epsilon^{1/2} \left(\frac{L_q}{L_p} \right) \beta_\theta \left[\frac{rw}{w^2+w_d^2} - \frac{rw_{pol}^2}{w^3} - \frac{8qr\delta_{ec}}{\pi^2w^2} \left(\frac{\eta j_{ec}}{j_{bs}} \right) \right], \]

- NTM amenable to complete suppression because \(\dot{w} < 0 \) for \(w \leq w_{pol} \)
- ECCD must be within island
 - no effect for \(\Delta R \gtrsim \delta_{ec} \)

\[
\eta = \eta_0 e^{-[5\Delta R/3\delta_{ec}]^2/(1+2\delta_{ec}^2/w^2)}
\]

- m/n = 3/2
- \(\beta_\theta = 0.9 \)
- \(\Delta \dot{r} = -3 \)
- \(r = 0.36 \text{ m} \)
- \(\epsilon^{1/2} = 0.5 \)
- \(L_q/L_p = 1.5 \)
- \(w_{pol}/r = 0.05 \)
- \(\delta_{ec}/r = 0.08 \)
- \(\eta_0 = 0.4 \) (no mod)
- \(\Delta R/\delta_{ec} = 0 \)
SUPPRESSION OF m/n=3/2 NTM BY OFF-AXIS ECCD

(ELMy H–mode with sawteeth)

Resources:

(1) lower cryopump to improve current drive

(2) up to 4 gyrotrons injecting up to 2.3 MW for 1 to 2 s

(3) PPPL & GA co–ECCD steerable launchers

T.C. Luce
F01.005
OPTIMUM LOCATION OF ECCD IS FOUND
BY SWEEPING TOROIDAL FIELD

- Toroidal field was ramped down to scan ECCD past the island
- Alignment within ±1 cm is required
- $j_{ECCD} > j_{BS}$ is satisfied (TORAY-GA)
 - 2 gyrotrons for \approx 1 MW injected

C. Petty
FO1.002

R. Prater
RP1.022
OPTIMUM CAN ALSO BE FOUND WITH FLATTOP TOROIDAL FIELD ADJUSTMENT

- Before ECCD, \(\gamma \equiv -I \frac{\partial B_{\theta,32}}{\partial t} \frac{dI B_{\theta,32}}{dt} \approx 0 \)
- Upon ECCD, initially \(\gamma \propto J_0 \exp \left[-(5\Delta R/3\delta_{ec})^2\right] \), \(\delta_{ec} \equiv \delta_{FWHM} \)

TORAY–GA predicts 2.7 cm

\(\beta_N \approx 1 \text{ MW} \)

\(w/r = 7 \text{ cm}/36 \text{ cm} \)

\(n=1 \text{ MIRNOV (G)} \)

\(n=2 \text{ MIRNOV (G)} \)

\(\delta_{FWHM} = 3.8 \pm 0.8 \text{ cm} \)

TORAY–GA predicts 2.7 cm

\(\Delta R \text{ (cm) from Variation of Toroidal Field and thus } 2f_{ce} \text{ Location, Shot-to-Shot} \)
ΔR “Blind Search” when mode (3/2 island) amplitude exceeds threshold

- Move plasma major radius (and island) “rigidly” (ΔR_{step} = 1 cm)

- Detect alignment of ECCD current deposition with island (“sweet spot”) by sufficient change in mode amplitude over the “dwell” time (100 ms)

- If mode decays at > threshold rate, continue to dwell. If not, continue search (or “jitter” . . .)

D.A. Humphreys
RP1.010

Δ_{SURF} = 2.3 cm

Island moved wrt 2f_{ce} resonance

ECH
f=110.0 GHz
facet ang=11.0 deg
tilt ang=66.0 deg
REAL-TIME CONTROL OF MAJOR RADIUS FOR ECCD SUPPRESSION
(m/n = 3/2 NTM, 3 GYROTRONS, 1.5 MW, 3000 TO 4800 ms)

PCS reset at 4500 ms
No PCS optimization
Search
Dwell
NTM restrikes on a sawtooth crash
PCS optimization starting from $\Delta R \approx -2$ cm
#106654
#106642

SAN DIEGO
DIII-D NATIONAL FUSION FACILITY
REAL-TIME CONTROL OF MAJOR RADIUS FOR ECCD SUPPRESSION
(m/n = 3/2 NTM, 3 GYROTRONS, 1.5 MW, 3000 TO 4800 ms)
PLASMA CONTROL SYSTEM REAL-TIME FEEDBACK

NTM CONTROL VARIES TOROIDAL FIELD IN RESPONSE TO MODE AMPLITUDE

- ΔB_T “Blind Search” when mode (3/2 island) amplitude exceeds threshold

- Adjust toroidal field and location of $2f_{ce}$ ($\Delta B_T = 0.01 \text{T} \Rightarrow \Delta R \approx 0.9 \text{ cm}$)

- Detect alignment of ECCD current deposition with island (“sweet spot”) by sufficient change in mode amplitude over the “dwell” time (100 ms)

- If mode decays at > threshold rate, continue to dwell. If not, continue search (or “jitter” . . .)

\[
\Delta B_T = 0.018 \text{ T} \quad \Rightarrow \quad \Delta R \approx 1.6 \text{ cm}
\]

2 f_{ce} resonance moved wrt island
REAL-TIME CONTROL OF TOROIDAL FIELD FOR ECCD SUPPRESSION

(m/n = 3/2 NTM, 3 GYROTRONS, 1.5 MW, 3000 TO 4000 ms)

PCS optimization starting from $\Delta B_T \approx 0.02T \approx \Delta R = 1.8$ cm

#107390

Dwell

Search

No PCS optimization

#106642
RAISING β_N AFTER ECCD SUPPRESSION OF m/n = 3/2 NTM

- β_N raised 60% (20% above onset level)
- mode restrikes as q=3/2 moves radially by 2 cm off ECCD

$\Delta R_{3/2}=2$ cm due to high β Shafranov shift

n=2 RMS (G)

n=1 RMS (G)

β_N
EXTERNAL HELICAL FIELD OF DIFFERENT HELICITY CAN DECREASE NTM PRESSURE PERTURBATION

\[\frac{\tau_R}{r^2} \frac{dw}{dt} = \Delta' + \frac{\varepsilon^{1/2} L_q}{L_p} (\frac{\beta_\theta}{w}) \left[\frac{w^2}{w^2 + w_d^2} - \frac{w_{pol}^2}{w^2} \right] \]

with \(w_d \approx (L_s/k_\theta)^{1/2} (\chi_\perp/\chi_\parallel)^{1/4} \)

effect of cross-field transport “washing out” helically perturbed bootstrap current — if \(w^2 < w_d^2 \)

- Non-resonant, static, \(n = 3 \) helical field
- \(|\vec{b}| = |B_{rmn}/B_T| \) can be up to \(2 \times 10^{-3} \) from C–Coil
- \(\vec{b} \) interferes with helical \(\nabla p \) of NTM
- \(\vec{b} \) acts similar to increasing cross-field “washing out”

\[w_d \to w_{do}^* \left(1 + \frac{|\vec{b}|^2}{4 \chi_\perp/\chi_\parallel} \right)^{1/4} \]

Q. Yu et al PRL (2001)

\(m/n = 3/2 \)
\(r = 36 \text{ cm} \)
\(w_{pol} = 1.8 \text{ cm} \)
\(\Delta r = -3 \)
\(\varepsilon^{1/2} \frac{L_q \beta_\theta}{L_p} = 0.675 \)
\(\chi_\perp/\chi_\parallel = 2 \times 10^{-8} \)

\(\tau_R \frac{dw}{dt} \)

\(w_d = 1.0 \text{ cm}, |\vec{b}| = 0 \)
\(\text{saturated } w \propto \beta_\theta \)

\(w_d = 3.0 \text{ cm}, |\vec{b}| = 2 \times 10^{-3} \)
n = 3 FIELDS FROM C–COIL

- **n = 3 helical field** is predominantly non-resonant \((m/n \leq q_0 \approx 1)\)
 - Fourier analysis on hi-lited surface
 - 4 turn coils, +5000, −5000, +5000, amps etc.

- **n = 3 radial field** “ripple” fall-off with minor radius is gradual
 - \(\sum B_{rm3} \text{ vs } R-R_{surf}\)
 - \(\sum B_{rm3} \text{ vs } R-R_{surf}\)

- n = 3 left hand (right hand is similar)

\[
\begin{array}{c|c}
\text{m} & B_{mn} \text{ (G)} \\
\hline
0 & 0 \\
1 & 15 \\
2 & 10 \\
3 & 5 \\
4 & 2 \\
5 & 0 \\
\end{array}
\]

- n = 3 on midplane \((\theta = 0^\circ)\) at \(\phi = 79^\circ\)

\[
\begin{align*}
q & \approx \frac{3}{2} \\
q & \approx 2 \\
r & = a
\end{align*}
\]

\[
\begin{array}{c|c}
R-R_{surf} (cm) & \text{G} \\
\hline
0 & 0 \\
10 & 50 \\
20 & 100 \\
30 & 50 \\
40 & 0 \\
50 & 0 \\
60 & 0 \\
\end{array}
\]
n = 3 NON-RESONANT HELICAL FIELDS APPLIED TO m/n = 3/2 NTM

- NTM not suppressed
 \[|\vec{b}| = \frac{B_{r3\text{eff}}}{B_{T0}} \approx 1.6 \times 10^{-3} \]

 S. Günter
 F01.006

- Plasma rotation slowed

\[2 \times \text{ION TOR. ROT. @} q=3/2 \]
● Consistent with n=3 ripple drag like TTMP

\[f = \frac{f_0 - f_{\tau M}}{(1 + C_3 B_{r3eff})^2} \]
\textbf{NTM inhibited}

\begin{itemize}
 \item \(l_{bl} = \frac{B_{r3eff}}{B_{To}} \approx 1.6 \times 10^{-3} \)
 \item Hysteresis makes \(l_{bl} \) more effective for small seed islands
\end{itemize}

\(n = 3 \) \textbf{NON-RESONANT HELICAL FIELDS APPLIED BEFORE} \(m/n = 3/2 \) \textbf{NTM}

\(\delta J_{bs} \propto \frac{\beta_\theta}{w} \frac{w^2}{w^2 + w_d^2} \)

\(l_{bl} = 0 \)

\(1 \times 10^{-3} \)

\(2 \times 10^{-3} \)

Seed

Saturated

3/2 \textbf{NTM onset as} \(n = 3 \) field ramped off
CONCLUSIONS ON CONTROL OF NTMS IN DIII–D

- Precise location of off-axis ECCD is needed for effective suppression
 - achieved by either ΔR or ΔB_T real-time control “search and suppress”
 - in presence of continued sawteeth
 - control requires pre-existing mode

- Beta can be raised above the initial NTM onset level
 - Shafranov shift moves $q = 3/2$ radially off the optimum
 - future work is real-time PCS alignment of j_{ec} on $q = 3/2$ in absence of NTM

- Large $n = 3$ helical fields can inhibit NTM onset
 - large island suppression ineffective
 - plasma rotation strongly damped