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ABSTRACT
• Recent DIII-D experiments in plasmas with pressures at or

above the no-wall ideal MHD stability limit have shown that
rapid toroidal rotation can enhance the stabilizing effect of a
surrounding conductive wall and delay the onset of resistive
wall modes or, in some cases, prevent them altogether.

• When the braking arising from magnetic error fields is
reduced, either by feedback or preprogrammed control of
currents in correction coils, the plasma rotation can b e
sustained by torque applied by neutral beam heating.

• Stable operation has been achieved with pressures well
above the no-wall limit for almost two seconds.

• These results are compared with cases where the input
torque was reduced by using more nearly perpendicular
beam injection or electron cyclotron heating.
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THE RWM HAS BEEN STUDIED ON DIII-D FOR SEVERAL YEARS

• Extensive diagnostic sets
characterize the Resistive Wall Mode
(RWM).
– Thirty external δBr loops and 18

internal δBr loops measure radial
perturbations.

– Four pairs of diametrically opposed
internal δBp probes measure poloidal
perturbations.

– Identical x-ray cameras at three
toroidal locations show RWM internal
structure .

• Six picture-frame coils allow pre-
programmed or closed-loop
feedback control of RWMs.
– Feedback stabilization commands are

generated from magnetic sensor
data, using a variety of algorithms,
and sent to three power amplifiers.

– Each amplifier energizes a pair of
active coils with the proper current
and phase for controlling growth of
the mode.

– The active coils are also used to
correct magnetic error fields arising
from imperfections in the toroidal and
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RWM IS A GLOBAL KINK WITH γ ~ τW
-1

• Magnetic probe and x-ray
measurements confirm RWM
global kink structure.

• Measured helical structure at
the VV wall and internal radial
displacements are in
agreement with modeling
results.

• Growth time is of order of the
flux penetration time of the
DIII-D VV wall, τW ~ 6 ms.
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FEEDBACK EXPERIMENTS IN 2000 USED EXTERNAL δBr
SENSORS

• Most experiments in 2000 used Smart Shell logic, where the
feedback system attempts to null the net radial flux through the
sensor loops.

• Other experiments used Explicit Mode Control logic, where the
feedback system attempts to suppress the residual flux from the
mode after subtracting contributions from the active coils.
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RWM KINK STRUCTURE IS RETAINED DURING  ACTIVE
FEEDBACK

• In this example of Smart Shell feedback using internal midplane δBr
loops, RWM mode amplitude is held at moderate level for ~ 20 τW.

• Internal radial displacement is well correlated with differences in δBp
from internal probes and phase-shifted δBr from external midplane
saddle loops.

0

1

2

3

4

5

1300 1350 1400 1450 1500 1550
0

10

20

30

-1

0

1

2

3

4

1300 1350 1400 1450 1500 1550
-10

0

10

20

30

40

45° Camera
195° Camera

ρ = 0.29

ρ = 0.42

ρ = 0.55

IN
T

E
N

S
IT

Y
 (

ar
b)

TIME  (ms) TIME  (ms)

R
19

5 
– 

R
45

   
(c

m
)

δB
  (

G
)

ρ = 0.29
ρ = 0.42
ρ = 0.55

δBp
δBr x 2

δBp(195°) – δBp(45°)
[δBr(285°) 
– δBr(135°)] x 2

106179

dB
  (

G
)

(a)

(b)

(c)

(d)



6

INTERNAL SENSORS ENABLE IMPROVED FEEDBACK
CONTROL

• This figure shows toroidal
plasma rotation data for
experiments using a rapid Ip
ramp to reliably trigger an
RWM at ~1400 ms in the
absence of closed-loop
feedback. (Toroidal rotation is
a sensitive indicator of the
presence of an RWM.)

• With Smart Shell feedback,
internal δBr loops are more
effective than external loops
in controlling the RWM.

• Internal δBp probes with
Explicit Mode Control
feedback are far more
effective than either internal
or external δBr loops and
Smart Shell feedback.
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OPTIMIZING ERROR FIELD CORRECTION IMPROVES
STABILITY

• By shot-to-shot optimization of currents in the active coils, static
n=1 error fields can be minimized.

• With optimized error field correction, plasma rotation is sustained
for a longer period and onset of RWM is delayed.
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EXPERIMENTS VALIDATE CALCULATED βN NO-WALL
LIMIT

• Calculations show that the no-wall
ideal MHD stability limit for
normalized plasma pressure βN =
β/(Ip/aB) is well represented by βN
no-wall

 ≈ λlllli, where llll i is the plasma
internal inductance and λ is
approximately constant for similar
plasma configurations. (A.D.
Turnbull et al., RP1.003)

• For βN ~ βN 
no-wall non-axisymmetric

magnetic error fields exert a
braking torque on toroidal rotation.

• Magnetic braking experiments at
different βN values confirm
calculated no-wall limits.
– For βN < βN 

no-wall the plasma is
insensitive to error fields.

– If pre-programmed error field
correction is turned off when 
βN ≥ βN 

no-wall plasma rotation stops
and RWM grows.

– If pre-programmed error field
correction is maintained when 
βN ≥ βN 

no-wall plasma rotation
continues and RWM does not grow.

106535
βN 

no-wall 
 = 2.4llll i

106795
βN 

no-wall 
 = 4llll i

0.0

0.5

1.0

1.5

2.0

(1
05

 P
a)

 Pressure

0.0 0.2 0.4 0.6 0.8 1.0
Rho

1

2

3

4

5

6

Safety Factor

       
0

1000

2000

3000

4000

C-coil current (A)

       
0

1

2

3

       
0

50

100

150

200

1100 1200 1300 1400 1500 1600 1700
0

5

10

15 n=1 dBr (gauss)

106029 106030 106031 106034

βN

βN
no wall

Plasma Toroidal Rotation (km/s) @ q = 2

Time (ms)



9

δBp FEEDBACK GIVES LONG DURATION
STABILIZATION

• In a plasma with slow Ip ramp, Explicit Mode Control feedback with δBp sensors
gives stable operation for almost a second (150 τW) at βN approaching twice the no-
wall stability limit. In this case, error field correction was intentionally de-tuned
before start of feedback.
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PLASMAS WITH βN 
no-wall

 ≈ 4lllli ARE SIMILAR TO βN 
no-wall

 ≈ 2.4lllli
CASES

• High performance, double null plasmas, with no Ip ramp and βN 
no-wall

 ≈
4llll i, respond to error fields in much the same way as βN 

no-wall
 ≈ 2.4lllli

cases.
– For βN < βN 

no-wall the plasma is insensitive to error fields.
– For βN ≥ βN 

no-wall RWM grows unless error fields are minimized.
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PRE-PROGRAMMING CURRENTS GIVES SIMILAR βN
AND fφ

• In a slow Ip ramp case, pre-programming active coil currents to match δBp
feedback currents from previous shot gives similar βN and fφ.

• This demonstrates that Explicit Mode Control feedback with δBp sensors
provides dynamic optimization of error field corrections.
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FOR βN ~ βN
no-wall THE PLASMA AMPLIFIES ERROR

FIELDS
• For βN ~ βN 

no-wall the plasma reacts resonantly with non-axisymmetric
magnetic error fields. (J.T. Scoville et al., RP1.009)

• Pulsed n=1 error fields with no preferred helicity give rise to nonlinear,
helical plasma response.

• Explicit Mode Control feedback with δBp sensors dynamically adjusts
active coil currents so as to minimize plasma response to error fields.
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ERROR FIELD CORRECTION ALLOWS βN > βN
no-wall  FOR

ALMOST 2 S
• With error field correction by either shot-to-shot optimization or δBp

feedback, long duration operation has been achieved at βN well above βN
no-wall.
– Active coil currents for the two correction methods are about the same.
– When maximum βN is controlled, plasma is stable at βN > βN 

no-wall for > 280 τW.
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STUDY OF LOW TORQUE CASES HAS BEGUN

• More nearly
perpendicular neutral
beams impart less
torque.

• 110 GHz gyrotrons
provide some of the
input power.

• Active coil currents
demanded by δBp

feedback are similar to
other cases.

• Explicit Mode Control
feedback can suppress
RWM and sustain
rotation at βN ~ βN 

no-

wall.
• Feedback may be

acting directly on mode
as well as correcting
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SUMMARY
• Error field correction allows rotational

stabilization of Resistive Wall Mode.
• Stable operation has been sustained for

almost 2 s at βN well above βN 
no-wall.

• When magnetic error fields are minimized,
toroidal plasma rotation can be sustained
by torque from neutral beams.
– Non-axisymmetric magnetic error fields

exert a braking effect on toroidal plasma
rotation.

– For plasma pressures above the no-wall
ideal stability limit, RWMs grow when
rotation stops.

– Closed-loop δBp feedback provides
dynamic correction of magnetic error fields.

– Error fields can also be corrected by shot-
to-shot optimization.

• Rapid toroidal rotation increases the
effectiveness of the conductive wall in
stabilizing Resistive Wall Modes

Instability grows when rotation stops
(amplitude exaggerated)

Plasma is stable when rotation
is sustained.


