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Plasma detachment in fusion devices: How / Can
we control the degree of detachment?

- Heat fluxes predicted for next-step fusion devices will cause ablation of
divertor target plates = reduction needed

- Detached plasma
» Cold (1eV) and dense (ng, >102°m-3) divertor plasma

» Formation of an ionisation front, hot plasma well-separated from material
surface

» Momentum and heat losses (plasma flow and temperature) synergetically
linked

— advantageous operational regime

- Experimentally well-achievable regime; but, lack of detailed analytic
description allowing active control
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Detachment in experiment: formation of
lonisation and recombination-dominated zones
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Use UEDGE to simulate detached plasmas in 2D
slab geometry to ...

. ... determine and describe the main processes that cause and affect
plasma detachment

and P

(lonisation of hydrogen ~ 5eV), i.e. what IS L._c.,, < N*

- dependence of the position of ionisation front
PY

. ... Study n,

ore heat

core heat *

= Active control of detachment in current and future fusion devices

- ... study sensitivity of boundary conditions on UEDGE solutions
» How significant is wall pumping?

» What is the effect of the assumption for the ion speed at the target on the
location of the ionisation front?
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Highlights

UEDGE simulations of plasma detachment in 2D geometry reveal ...

- Location of ionisation front is chiefly determined by
» parallel heat flux into divertor SOL
» radial heat transport from SOL into PFR below x-point
» radiation losses due to ionisation of recycling neutrals

- Highest separation of plasma - wall at high n_,,, (ionisation front
close to x-point)

- High heating power permits highest degree of volumetric
recombination and momentum flow reduction

- No further reduction of peak heat flux density once plasma detached
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Computational domain: 2D slab geometry
Hydrogenic plasma - no impurities !
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Braginskii Equations for momentum and power
flow in UEDGE 2D slab geometry

« Momentum equation (plasma):
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* Energy equation (electrons):
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Base case results (energy equation)

Variation of Power Density along Separatrix
- Significant outflow of heat from SOL

ionisation front

1107 — e 25 into PFR due to geometry = plasma
’ . ’ cooling = spreading of heat over
, m larger area
~ 510° §
> =+ Inside ionisation front: plasma cooling
2 0 = due to radiation, but also electron
. 2 heating due to i-e temperature
= i = . ..
£ -510° - % equipartition
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0o 02 04 06 08 1 but still significant radiation losses due
Poloidal Distance (m) to recombination / ionisation
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Base case results (momentum equation)

Variation of Momentum Density along Separatrix
- Significant pressure drop along
1 10% SOL
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radial —
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lonisation zone moves toward x-point and
spreads radially in strongly detached plasmas

Attached plasma: ionisation Detached plasma: ionisation
occurs nearby strikepoint front moves to x-point
nen0<0'ionv>
Core
upstream poloidal — target




Recombination zone expands both poloidally
and radially in strongly detached plasmas

Detachment onset: recombination  Strongly Detached plasma: cold plasma

zone adjacent to target (also in PFR?) fills space between ion.front and plate
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lonisation front moves toward x-point at higher
core plasma density
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core core
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Higher core plasma densities at
constant heating power give rise to ...

- Lower T, in upstream SOL

- Lower influxes of heat into
divertor

. Heat is convected rather than
conducted

- Lower divertor plasma densities,
but higher divertor neutral densities

= Shallower temperature gradients

inside ionisation front



lonisation front moves closer to the target at
higher input power
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Higher input power at constant
core plasma density give rise to ...

- Higher T, in upstream SOL

- Higher influxes of heat into
divertor

- Larger divertor plasma and
neutral densities

= Steeper temperature gradients
inside ionisation front
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lonisation front moves closer to target at lower
wall pumping rates
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Location of ionisation front insensitive to
lon speed setting at the target

Mach(targe=1  Mach(targe)=0.1 __ Reducing the Mach number at the
0 omisaton | target plate for detached plasmas
| Front | : .
= o8l - ‘ 0 m gives rise to ...
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2 S location
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5 = However, varying Mach number for
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to temperature and density profiles
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Result I: Location of the ionisation front in
core density - heating power space

Contours of constant distance between
lonisation front (T_,=5eV) and target plate

Significant separation of plasma

2510
’ from wall require high core
—~ 2109 plasma densities
= : Increasing heating drives
15100 plasma closer to target = even
: ’ higher core densities needed
g 1107 Non-linear relationship between
; location of ionisation front and
3§ 5107 core density / heating power
|
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Result Il: Roll-over of ionisation current with ng;,,
threshold for vol. recombination at high P, ?
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UEDGE density normalised to predicted
upstream density by 2-Point Model

Use Two-Point Model (1D Model) to predict upstream SOL
density (detachment onset, T,= 1eV):

(7%]_4/7
m; 2\ 2Kpe

Nup— =1/2

- : - Pn BT
Estimate width of parallel heat flux density: || = 1 Bo
q| =P
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Result Ill: Fractions of plasma momentum lost to
neutrals larger at high heating power
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CX Momentum Losses
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Plasma momentum integrated
over PRF and SOL domain in
divertor, over SOL upstream
Higher heating power = higher
lon densities in divertor = larger
momentum removal

Drop in ion density as ionisation
front moves off target

compensated by increase in
neutral density and RDR width

&



Result IV: Peak heat flux is reduced and shifted
radially outward in transition to detachment

Electron + ion heat flux density measured at divertor entrance (x-
point) and target

attached plasma plasma at detachment onset
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Peak heat flux is reduced until onset of
detachment, no further reduction once detached

d),RDR _
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Radiation Heat Losses

Radiated power integrated over
PRF and divertor SOL domain

Sharp increase in power losses
when plasma is attached
(0.1 <neyre nom < 1.5)

P4 @approaches unity and then
decreases as entire SOL
plasma becomes cold
(T,~5-10eV)

High fraction of P, are

Normalised Core Density sustained at high heating power
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