The ROLE of Neutrals in H-mode Pedestal Formation

by R.J. Groebner

Presented at the American Physical Society Division of Plasma Physics Meeting Long Beach, California

October 29 through November 2, 2001

ACKNOWLEDGMENTS

- B. Carreras and G. Staebler have been pointing out importance of neutrals for years
- A. Mahdavi, R. Colchin, A. Leonard, L. Owen, T. Osborne, G. Porter, have made major contributions to this work
- Thanks to R. Boivin for many useful discussions
- Thanks to the entire DIII-D group for its support

OUTLINE

• Introduction

- Importance of H-mode pedestal
- We focus on electron density profile
- Analytic model for edge n_e and n_n profiles
 - For spatially uniform D, profiles have same scale lengths
 - Consistent with many experimental observations
 - At low temperature: $\Delta_{ne} \sim n_{e,ped}^{-1}$; $\nabla n_e \sim n_{e,ped}^2$
 - Important limitation for higher temperatures
- Relationship between T_e and n_e H-mode barriers
 - Barriers tend to be close
 - Sometimes T_e barrier extends further into plasma

RIG APS 2001

• Summary and conclusions

KEY POINTS

- A simple analytic model for edge density profiles is consistent with DIII-D data
- The edge electron density and neutral profiles are predicted to have same characteristic scale length

 For spatially uniform particle diffusion
- In the fuelling zone, this length is the neutral penetration length

RJG APS 2001

• Thus, the model provides insight into the physics of the width of H-mode pedestal for density

4

H-MODE PLASMAS HAVE LARGE EDGE GRADIENTS AND EDGE PEDESTALS

RJG APS 2001

TO PREDICT CORE CONFINEMENT, WE NEED TO PREDICT PEDESTAL SIZE

- Core confinement increases with pedestal pressure or temperature
- Predicting core confinement requires predicting pedestal height
- Physics controlling pedestal width not understood

T. Osborne, et. al., 24th EPS Conf. 21A, 1101 (1997)

GENERAL ATOMICS

A STANDARD PICTURE: WIDTH OF PEDESTAL IS SAME AS ZONE OF REDUCED TRANSPORT

HOW DO WE UNDERSTAND AN n_e BARRIER WHICH IS NARROWER THAN THE T_{ρ} BARRIER?

- **Expect that D** and χ are reduced in same zone
- T_e barrier indicates that D and χ are reduced over wider region than the n_e barrier
- Why is *n_e* barrier so narrow?

THEORY AND EXPERIMENT POINT TO ROLE OF NEUTRALS IN FORMING EDGE n_e PROFILE

- Transport models emphasize role of particle flux in barrier formation of Hmode transport barrier
 - Hinton & Staebler Phys. Fluids B 5 1281 (1993)
 - Lebedev, Diamond, Carreras Phys. Plasmas 4 1087 (1997)
 - Width of density barrier is set approximately by neutral penetration length
- C-MOD shows that edge n_e profile is produced by particle transport (D) and fuelling (v_i, n_n, V_n)
 - Boivin, Carreras et al. Phys Plasmas 7, 1919 (2000)

$$\Delta_{ne} = 2\sqrt{D/2v_i}$$

$$n_{e,ped} = n_n \sqrt{2V_n^2/Dv_i}$$

RJG APS 2001

- Introduction
 - Importance of H-mode pedestal
 - We focus on electron density profile
- Analytic model for edge n_e and n_n profiles
 - For spatially uniform D, profiles have same scale lengths
 - Consistent with many experimental observations
 - At low temperature: $\Delta_{ne} \sim n_{e,ped}^{-1}$; $\nabla n_e \sim n_{e,ped}^{2}$
 - Important limitation for higher temperatures
- Relationship between T_e and n_e H-mode barriers
 - Barriers tend to be close
 - Sometimes T_e barrier extends further into plasma

RJG APS 2001

• Summary and conclusions

AN ANALYTIC MODEL IS FORMULATED TO RELATE PEDESTAL WIDTH TO PEDESTAL HEIGHT

• Use coupled, steady-state, particle continuity equations for electron density and neutral hydrogen atoms (Engelhardt^[1])

- Solve on open and closed field lines with matching at LCFS

- Model extended by Mahdavi^[2] to include poloidal variation in neutral source, separate *D* in SOL and core.
- Assume neutral temperature at LCFS is same as ion temperature, due to charge exchange in SOL
- Goal is to model $n_{\rm e}$ from LCFS inwards
- For low temps, there is about one CX event per ionization
 - Thus, multiple charge exchange is ignored

[1] W. Engelhardt, W. Fenenberg, J. Nucl. Mater. 76-77 (1978) 518.[2] M.A. Mahdavi et al., 2000 IAEA meeting, to be published in Nucl. Fusion

RJG APS 2001

SCALE LENGTHS ARE SAME IN ANALYTIC MODEL

LOCATION OF FUELLING AFFECTS DENSITY WIDTH

- *E* is ratio of flux expansion at fuelling location θ_0 to expansion at measurement location θ_m
- In reality, *E* is some average over extended neutral source

 FWHM is ~ 55° in this example from a DEGAS calculation
- From neutral model in UEDGE, average *E* is estimated at 3 to 4 for divertor fuelling
- If fuelling were from outer midplane, E would be ~ 0.5

– Would disagree with results

MODEL PREDICTS THAT *n_e* PROFILES HAVE "TANH" SHAPE - AS OBSERVED

14

MODEL PREDICTS QUALITATIVE AND QUANTITATIVE DEPENDENCE OF EXPERIMENTAL WIDTH W_{ex} ON $n_{e,ped}$

MODEL PREDICTS THE QUALITATIVE DEPENDENCE: MAXIMUM $\nabla n_e \sim n_{e,ped}^2$

MODEL PREDICTS: L-MODE AND H-MODE n_e PROFILES, WITH SAME $n_{e,ped}$, HAVE SIMILAR SHAPE

• Widths from LCFS to pedestal are similar. Different $n_{e,sep}$ can be explained by different transport coefficients.

TRANSPORT WAS MUCH HIGHER IN L-MODE THAN IN H-MODE

- H-mode gradients for P_e and T_e were ~ order of magnitude higher in H-mode
- Implies significantly higher transport in L-mode
- Higher transport in L-mode required higher neutral source (gas puff) to match H-mode pedestal density!!!!!!

THE MODEL HAS AN IMPORTANT LIMITATION, **RELATED TO HIGH TEMPERATURE**

- Introduction
 - Importance of H-mode pedestal
 - We focus on electron density profile
- Analytic model for edge n_e and n_n profiles
 - Profiles have same characteristic scale lengths
 - Consistent with many experimental observations
 - At low temperature: $\Delta_{ne} \sim n_{e,ped}^{-1}$; $\nabla n_e \sim n_{e,ped}^{-2}$
 - Important limitation for higher temperatures
- Relationship between T_e and n_e H-mode barriers
 - Barriers tend to be close
 - Sometimes T_e barrier extends further into plasma

RIG APS 2001

• Summary and conclusions

THEORIES IMPLY THAT T_e AND n_e BARRIERS APPROXIMATELY OVERLAP IN SPACE

- Transport barrier theories say that heat and particle fluxes make transport barriers
 - Edge particle flux is dominant flux for H-mode barrier
 - However, heat source might also play a role
- Implication is that temperature barrier should be close to or slightly inboard of density barrier
- Experiment shows this behavior
- Theories are not quantitative about relationship between T_e and n_e barriers

RIG APS 2001

— Thus, further testing not possible

INNER EDGES OF T_e AND n_e TRACK AS BARRIER WIDTH INCREASES

- Barrier widths (T_e, n_n) grow in time
- Inner edges of both barriers are close in position
- Inner edges of both barriers tend to move together

WIDTH OF T_e BARRIER IS COMPARABLE TO OR GREATER THAN WIDTH OF n_e BARRIER

RJG APS 2001

 Data from previous database
 Effect is even stronger than shown here, because some of W_{ne} is from SOL

PROFILES SHOW THAT T_e **BARRIER** IS WIDER THAN n_e BARRIER 6.0 Edge of n_e barrier 3.0 n_e (10¹⁹) m⁻³) 0.6 Edge of T_e barrier 0.3 T_e (keV) 4.0 SEP 2.0 P_e (kPa) 0.0 0.75 0.80 0.70 0.65 **ELEVATION (m)**

RJG APS 2001

24

GENERAL ATOMICS

SUMMARY AND CONCLUSIONS

- Analytic model developed for edge n_e and n_n profiles
- Model is consistent with several observations in DIII-D, for low edge temperature
 - n_e profile has tanh shape in L-mode and H-mode
 - W_{ne} scales qualitatively and quantitatively with $n_{e,ped}$ -1
 - $-\nabla n_e$ scales with $n_{e,ped}^2$
 - L– and H–mode profiles with same $n_{e,ped}$ have similar shape
- Edge electron density and neutral profiles have same characteristic scale length (for L-mode or H-mode)
 - This length is neutral penetration length
 - Determined self-consistently by particle transport and fuelling
 - Caveat particle transport assumed constant

RJG APS 2001

SUMMARY AND CONCLUSIONS

- For high edge temperature (above ~500 eV), W_{ne} increases with $n_{e,ped}$
- Multiple charge exchange and other temperature effects are important
 - Ignored by present version of model
 - Multiple CX allows deeper neutral penetration
 - Could CX provide an apparent dependence of width on T_i ?
- T_e and n_e barriers tend to track one another
 - $-T_e$ barrier often extends inwards of n_e barrier
 - This behavior is qualitatively consistent with barrier models

RJG APS 2001

 Better understanding of transport is required to quantify the relation between T_e and n_e barriers

