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OUTLINE

● Introduction
 Importance of H-mode pedestal
 We focus on electron density profile

● Analytic model for edge ne and nn profiles
 For spatially uniform D , profiles have same scale lengths
 Consistent with many experimental observations
 At low temperature:    ∆ne ~ ne,ped

-1;    ∇ ne ~ ne,ped
2

 Important limitation for higher temperatures
● Relationship between Te and ne H-mode barriers

 Barriers tend to be close
 Sometimes Te barrier extends further into plasma

● Summary and conclusions
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KEY POINTS

● A simple analytic model for edge density profiles is consistent with DIII–D
data

● The edge electron density and neutral profiles are predicted to have same
characteristic scale length

 For spatially uniform particle diffusion

● In the fuelling zone, this length is the neutral penetration length

● Thus, the model provides insight into the physics of the width of H–mode
pedestal for density
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H–MODE PLASMAS HAVE LARGE EDGE
GRADIENTS AND EDGE PEDESTALS

Gradients
and
Pedestals
Develop
Across L-H
Transition



6

                       RJG APS 2001
NATIONAL FUSION FACILITY

S A N  D I E G O

DIII–D

TO PREDICT CORE CONFINEMENT, WE NEED TO
PREDICT PEDESTAL SIZE
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● Core confinement
increases with pedestal
pressure or
temperature

● Predicting core
confinement requires
predicting pedestal
height

● Physics controlling
pedestal width not
understood
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A STANDARD PICTURE: WIDTH OF PEDESTAL IS
SAME AS ZONE OF REDUCED TRANSPORT
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HOW DO WE UNDERSTAND AN ne BARRIER WHICH
IS NARROWER THAN THE Te BARRIER?

● Expect that D  and χ are
reduced in same zone

● Te barrier indicates that D
and χ are reduced over
wider region than the ne
barrier

● Why is ne barrier so
narrow?
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THEORY AND EXPERIMENT POINT TO ROLE OF
NEUTRALS IN FORMING EDGE ne PROFILE

● Transport models emphasize role of particle flux in barrier formation of H-
mode transport barrier

 Hinton & Staebler - Phys. Fluids B 5 1281 (1993)

 Lebedev, Diamond, Carreras - Phys. Plasmas 4 1087 (1997)

 Width of density barrier is set approximately by neutral penetration
length

● C-MOD shows that edge ne profile is produced by particle transport (D)
and fuelling (νi, nn, Vn)

 Boivin, Carreras et al. - Phys Plasmas 7, 1919 (2000)

∆ne iD= 2 2ν n n V De ped n n i, = 2 2 ν
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OUTLINE
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AN ANALYTIC MODEL IS FORMULATED TO RELATE
PEDESTAL WIDTH TO PEDESTAL HEIGHT

● Use coupled, steady-state, particle continuity equations for electron
density and neutral hydrogen atoms (Engelhardt[1] )

 Solve on open and closed field lines with matching at LCFS
● Model extended by Mahdavi[2] to include poloidal variation in neutral

source, separate D  in SOL and core.
● Assume neutral temperature at LCFS is same as ion temperature, due

to charge exchange in SOL
● Goal is to model ne from LCFS inwards
● For low temps, there is about one CX event per ionization

 Thus, multiple charge exchange is ignored

[1] W. Engelhardt, W. Fenenberg, J. Nucl. Mater. 76-77 (1978) 518.
[2] M.A. Mahdavi et al., 2000 IAEA meeting, to be published in Nucl. Fusion
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SCALE LENGTHS ARE SAME IN ANALYTIC MODEL
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LOCATION OF FUELLING AFFECTS DENSITY WIDTH

● E is ratio of flux expansion at
fuelling location θ0 to expansion
at measurement location θm

● In reality, E is some average
over extended neutral source

 FWHM is ~ 55° in this example from
a DEGAS calculation

● From neutral model in UEDGE,
average E is estimated at 3 to 4
for divertor fuelling

● If fuelling were from outer
midplane, E would be ~ 0.5

 Would disagree with results
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MODEL PREDICTS THAT ne PROFILES HAVE
“TANH” SHAPE - AS OBSERVED

● Experimental
edge ne
profiles
routinely are fit
well with the
“TANH” shape

● A “modified”
TANH is used
to give
continuous first
derivative
everywhere

PEDESTAL

Y ~ tanh [(Xsym - X) / ∆] 

∆
Wex = 2∆

Xsym

Y

X
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MODEL PREDICTS QUALITATIVE AND QUANTITATIVE
DEPENDENCE OF EXPERIMENTAL WIDTH Wex ON ne,ped

● Theoretical
width Wth is
defined to
emulate Wex

● Wth is distance
from 12% to
88% of ne,ped in
model function

● Parameters in
model are
typical values
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MODEL PREDICTS THE QUALITATIVE DEPENDENCE:
MAXIMUM ∇ne ~ ne,ped

2
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MODEL PREDICTS: L–MODE AND H–MODE ne PROFILES,
WITH SAME ne,ped, HAVE SIMILAR SHAPE

● Widths from LCFS to pedestal are similar.
Different ne,sep can be explained by different transport coefficients.
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TRANSPORT WAS MUCH HIGHER
IN L–MODE THAN IN H–MODE

● H-mode gradients for Pe and
Te were ~ order of magnitude
higher in H–mode

● Implies significantly higher
transport in L–mode

● Higher  transport in L–mode
required higher neutral source
(gas puff) to match H-mode
pedestal density!!!!!!!
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THE MODEL HAS AN IMPORTANT LIMITATION,
RELATED TO HIGH TEMPERATURE

● Sometimes,
barrier width
increases as
ne,ped increases

● Correlated with
pedestal temps
of ≥  0.5 keV

● Possibly due to
multiple CX
events, ignored
by model
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THEORIES IMPLY THAT Te AND ne BARRIERS
APPROXIMATELY OVERLAP IN SPACE

● Transport barrier theories say that heat and particle fluxes make
transport barriers

 Edge particle flux is dominant flux for H-mode barrier
 However, heat source might also play a role

● Implication is that temperature barrier should be close to or slightly
inboard of density barrier

● Experiment shows this behavior
● Theories are not quantitative about relationship between Te and ne

barriers
 Thus, further testing not possible
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INNER EDGES OF Te AND ne TRACK
AS BARRIER WIDTH INCREASES

● Barrier widths
(Te, nn) grow in
time

● Inner edges of
both barriers
are close in
position

● Inner edges of
both barriers
tend to move
together
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WIDTH OF Te BARRIER IS COMPARABLE TO OR
GREATER THAN WIDTH OF ne BARRIER

● Data from
previous
database

● Effect is even
stronger than
shown here,
because some of
Wne is from SOL
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PROFILES SHOW THAT Te BARRIER
IS WIDER THAN ne BARRIER
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SUMMARY AND CONCLUSIONS

● Analytic model developed for edge ne and nn profiles
● Model is consistent with several observations in DIII-D, for low edge

temperature
 ne profile has tanh shape in L-mode and H-mode
 Wne scales qualitatively and quantitatively with ne,ped

-1

 ∇ne scales with ne,ped
2

 L– and H–mode profiles with same ne,ped have similar shape
● Edge electron density and neutral profiles have same characteristic scale

length (for L-mode or H-mode)
 This length is neutral penetration length
 Determined self-consistently by particle transport and fuelling
 Caveat - particle transport assumed constant
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● For high edge temperature (above ~500 e V), Wne increases with ne,ped

● Multiple charge exchange and other temperature effects are important
 Ignored by present version of model
 Multiple CX allows deeper neutral penetration
 Could CX provide an apparent dependence of width on Ti?

● Te and ne barriers tend to track one another
 Te barrier often extends inwards of ne barrier
 This behavior is qualitatively consistent with barrier models

● Better understanding of transport is required to quantify the relation between
Te and ne barriers

SUMMARY AND CONCLUSIONS


