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MOTIVATION

261-01/rs

● For steady state operation of high performance plasmas with internal transport 

 barrier (ITBs), need control of ITB location and profile gradients

● Larger ITB radius and wider ITB widths leads to:

 — Higher fusion performance with larger plasma volume at high confinement levels

 — Improved MHD stability limits with broader pressure profiles

 — Improved bootstrap current alignment

● Specifically QDB plasma tend to have peaked density profiles which leads to

 poor bootstrap current alignment and high z impurity accumulation on-axis

 — Need means to reduce the density peakedness in QDB plasmas
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SUMMARY
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● Various methods have been investigated to modify and control the plasma
 profiles in QDB plasmas
 — On-axis and off-axis ECH
 — Impurity injection (neon, argon, krypton)
 — Off-axis pellet injection

● On-axis ECH was effective at reducing the central electron density and
 increasing the central electron temperature
 — Significantly reduced the toroidal rotation, but did not adversely affect
  the ion temperature

● Both neon and argon increased and broadened the electron density
 — However, both Ne and Ar reduced Ti and vφ with Ne producing a larger reduction

● Krypton produced a transient increase in all the profiles, but led   to disruptions
 as a result of unmanageable krypton inventory

● Off-axis pellet  injection broadened the density profile and produced a transient 
 increase in performance, but reduced Ti and vφ and the final performance level
 — Need to add more heating power
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COMBINATION OF CORE ITB AND QH–MODE EDGE RESULTS
IN SUSTAINED HIGH PERFORMANCE IN QDB PLASMAS
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● βNH89 = 7 for
 10 τE (1.6 s)

● Example of
 quiescent
 operation
 without EHO,
 but with global
 1/1 mode

● Same performance
 obtained in
 discharges with
 EHO
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QDB REGIME COMBINES CORE TRANSPORT BARRIER WITH
QUIESCENT EDGE BARRIER — “QUIESCENT DOUBLE BARRIER”
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● Need to develop tools to control the profiles



PLASMA AND TOOL SPECIFICATIONS
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● QDB target plasmas
 — Upper  single null diverted
 — Ip = 1.6 MA, BT = 2.0 T, κ = 1.9, δ (upper) = 0.8, δ (lower) = 0.4, outside gap = 12 cm
 — Both upper cryopumps
 — Counter-NBI

● ECH
 — Radial launch, ρ = 0.12, 0.36, 0.57, 0.70

 — 110 GHZ, PECH ~2 MW

● Impurity injection
 — Neon
 — Argon

 — Krypton

● Pellet injection
 — Solid deuterium, vertical injection, ρ (tangency) ~ 0.7
 — Diameter = 2.7 mm
 — Low field side launch
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GAS IMPURITIES AND PELLETS WERE INJECTED FROM  
SEVERAL LOCATIONS AROUND THE DIII–D VESSEL
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● Upper single-null divertor configuration

● Ip = 1.6 MA, BT = 2.0 T

● Large outside gap (~12 cm)

● Cryopumping at upper divertor
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APPLICATION OF NEAR ON-AXIS ECH INCREASES THE CENTRAL 
ELECTRON TEMPERATURE BUT REDUCES THE TOROIDAL ROTATION
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● ECH leads to ELMing H–mode — however not always the case
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ON-AXIS ECH REDUCES THE CENTRAL DENSITY AND 
INCREASES THE CENTRAL ELECTRON TEMPERATURE
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● The density profile becomes broader, but central density is reduced

● The electron temperature is more peaked 

● PECH ~ 2 MW, ρECH ~ 0.12
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ON-AXIS ECH SIGNIFICANTLY REDUCES THE TOROIDAL
ROTATION ACROSS THE PLASMA
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NEON INJECTION DOES NOT STRONGLY AFFECT THE
EHO CHARACTERISTICS BUT PERFORMANCE IS REDUCED
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● Excessive neon leads to ELMing H–mode or to L–mode edge
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NEON INJECTION INCREASES AND
BROADENS THE DENSITY PROFILE
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NEON INJECTION LEADS TO REDUCTION IN THE CENTRAL
ION TEMPERATURE AND TOROIDAL ROTATION
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ARGON INJECTION AT MODERATE LEVELS DOES NOT  
PRODUCE ANY CHANGE IN THE PLASMA PERFORMANCE
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● Strong argon injection leads to loss of EHO and QH–mode edge
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ARGON INJECTION LEADS TO A MODEST BROADENING 
OF THE ELECTRON DENSITY PROFILE AND LOWERING

OF THE ELECTRON TEMPERATURE PROFILE
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ARGON INJECTION PRODUCES A SLIGHT REDUCTION IN THE
ION TEMPERATURE AND TOROIDAL ROTATION 
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KRYPTON INJECTION DESTROYS THE EHO AND  
FINALLY LEADS TO DISRUPTION
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● Krypton is retained from shot to shot – hard to control amount consistently
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KRYPTON INJECTION INCREASES THE CENTRAL ELECTRON
DENSITY, BUT KRYPTON LEVEL IS UNMANAGEABLE
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KRYPTON INJECTION LEADS TO AN INCREASE IN BOTH
THE ION TEMPERATURE AND TOROIDAL ROTATION

PROFILES BEFORE THE DISRUPTION
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OFF-AXIS PELLET INJECTION PRODUCES A
TRANSIENT INCREASE IN THE NEUTRON FLUX
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● However, the overall performance is reduced later in time
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THE OFF-AXIS PELLET INCREASES AND
BROADENS THE DENSITY PROFILE
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OFF-AXIS PELLET INJECTION WEAKENS THE INTERNAL 
BARRIERS FOR Ti AND ωφ IN QDB PLASMAS
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SUMMARY
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● Various methods have been investigated to modify and control the plasma
 profiles in QDB plasmas
 — On-axis and off-axis ECH
 — Impurity injection (neon, argon, krypton)
 — Off-axis pellet injection

● On-axis ECH was effective at reducing the central electron density and
 increasing the central electron temperature
 — Significantly reduced the toroidal rotation, but did not adversely affect
  the ion temperature

● Both neon and argon increased and broadened the electron density
 — However, both Ne and Ar reduced Ti and vφ with Ne producing a larger reduction

● Krypton produced a transient increase in all the profiles, but led   to disruptions
 as a result of unmanageable krypton inventory

● Off-axis pellet  injection broadened the density profile and produced a transient 
 increase in performance, but reduced Ti and vφ and the final performance level
 — Need to add more heating power

NATIONAL FUSION FACILITY
S A N  D I E G O

DIII–D




