Dependence of Achievable β_N on Discharge Shape and Edge Safety Factor in DIII–D Steady-State Scenario Discharges

by J.R. Ferron

with T.C. Luce, P.A. Politzer, R. Jayakumar,* and M.R. Wade[†]

> *Lawrence Livermore National Laboratory. [†]Oak Ridge National Laboratory

Presented at the American Physical Society Division of Plasma Physics Meeting Long Beach, California

October 29 through November 2, 2001

Motivation

Motivation: high β_N is an important component of the self-consistent parameter set for a steady-state, advanced tokamak discharge

- High $\beta \tau_{\rm E} \propto (\beta_{\rm N}/q) (H_{89}/q^{lpha})$ for fusion power output.
- High bootstrap fraction $f_{\rm BS} \propto eta_{\rm P} \propto q eta_{\rm N}$ for steady state.
- Optimum discharge has relatively high q (including q(0), q_{\min} , q_{95}) for f_{BS} , high β_{N} for power output.
- High β_{N} enhances off-axis ECCD efficiency.
- Low density required for efficient electron cyclotron current drive (ECCD).
- Low density requires pumping of H-mode divertor exhaust.

Background

Optimization of $\beta_{\rm N}$ was sought within the constraints of the advanced tokamak scenario

- Prior to upper divertor baffle installation (1999), $\beta_N H_{89} \approx 10$, $\beta_N \approx 3.7$ sustained in $\kappa = 2$, $\delta = 0.9$ shape.
- Achievable β_N (\approx 3.4) reduced in lower elongation, triangularity ($\kappa = 1.7$, $\delta = 0.7$) shape compatible with pumping after divertor baffle installation (2000).
- 1999-2000 operation at $B_{T} = 1.6T$ for ECCD.
- Data set shows a dependence of the achievable β_N on the shape parameter $S = (I/aB)q_{95}$.
- Leads to 2001 investigation of the effect of variation in shape and q_{95} (by changing $B_{\rm T}$) on achievable $\beta_{\rm N}$.

HIGH NORMALIZED PERFORMANCE (~10) SUSTAINED FOR 5 τ_{E} IN κ = 2, δ = 0.9 SHAPE

OBSERVED β_{N} LIMIT HAS A SIGNIFICANT DEPENDENCE ON PLASMA SHAPE

• Comparison between shapes available before and after divertor baffle installation

• Experimental scans at constant I/aB

Experimental results

Experimentally achievable β_N increased at higher q_{95}

- $\beta_{N} = 4.1$ sustained at $B_{T} = 1.85T$ in $\kappa = 1.8$, $\delta = 0.7$ shape (compared to $\beta_{N} = 3.4$ at $B_{T} = 1.6T$).
- Improvement over β_N in the older higher elongation, triangularity shape.
- Provides a satisfactory β_N value for an ECCD target.
- No improvement in β_N was found by varying the discharge shape near the pumping geometry.
- $\beta_{\rm N}$ limited, high performance phase terminated by instability:
 - Resistive wall modes (RWM).
 - ELMs
 - Neoclassical tearing modes (NTM) at m/n = 2/1.
- Maximum β_N :
 - Up to $5.5\ell_i$.
 - Above the ideal, no-wall n = 1 limit.
 - In some cases, close to the ideal-wall limit.

EXPERIMENTAL STUDIES INDICATE β_N INCREASES WITH INCREASING q95

- Increasing DRSEP causes a drop in the shape parameter S = (I/aB) q₉₅ and q₉₅ itself
- 1999-2000 studies indicated variation of RWM β limit with shape parameter and q₉₅

CONDITIONS CONDUCIVE TO HIGH f_{BS} AND HIGH $\beta \tau$ (β_N = 4, H_{89} = 3 WITH q_{min} > 1.5) SUSTAINED FOR $5\tau_E$

No systematic variation in β_N resulted from many small variations about the standard pumping shape

β_{N} ~ 4 HAS BEEN ACHIEVED WITH THE UPWARD SHAPE BIAS REQUIRED TO MAINTAIN DENSITY CONTROL

Pumped Shape

Unpumped Shape

251-01/JRF/wj

ERROR FIELD CORRECTION AND RWM FEEDBACK STABILIZATION HAVE ALSO BEEN SUCCESSFUL IN IMPROVING THE ACHIEVABLE β_N

Modeling of no-wall limit

Modeling based on ideal n = 1 no-wall theory cannot account for the changes in β_N observed in the experiment

- In contrast to the experiment, the predicted no-wall n = 1 limit:
 - Decreases as q_{95} increases.
 - * Scan of B_{T} at constant shape.
 - * Change in I_p at constant shape.
 - Is lower in the higher elongation, triangularity shape.
- Modeling also predicts that the no-wall n = 1 limit:
 - Is optimized at lower q(0).
 - Is not strongly dependent on details of the pressure gradient profile shape.
- Modeling:
 - Equilibria computed with the code TOQ.
 - Current and pressure gradient profiles modeled from measured experimental profiles.
 - Ideal stability computed with GATO with or without a conformal wall or a wall at the DIII-D vessel position.

Stability modeling results show that the marginal value of β_N is constant or decreasing as B_T and q_{95} are increased

No increase in the ideal, no-wall, n = 1 stability limit with extra shaping has been found in initial modeling results

Sensitivity of the β_N limit to the model profiles was studied for the more strongly shaped case

Effect of an ideal wall

Increases in $\beta_{\rm N}$ achieved by exceeding the no-wall limit by a wider margin

- The no-wall limit is exceeded if the ideal wall must be present for stability.
- The more the no-wall limit is exceeded, the closer the stabilizing wall must be to the plasma.

Maximum β_N achievable with an ideal wall determined by modeling stability versus wall position

• Little difference in response to $B_{\rm T} = 1.6 {\rm T} \ (\kappa = 1.8, \, \delta = 0.7)$ 4.5 change in wall position as shape and B_{T} (i.e. $\kappa = 2.0, \ \delta = 0.9$ $(B_{\rm T} = 1.6{\rm T})$ q_{95}) are varied. 4.0 normalized beta q(0) = 1.27 $(B_{\rm T} = 2.1 {\rm T})$ $\kappa = 1.8, \ \delta = 0.7)$ $B_{\rm T} = 1.85 {\rm T}$ 3.5 $(\kappa = 1.8, \delta = 0.7)$ Equivalent **DIII-D** wall $B_{\rm T} = 2.1 {\rm T}$ position $(\kappa = 1.8, \delta = 0.7)$ 3.0 1.4 1.6 1.8 2.0 2.2 2.4

conformal wall position (factor times minor radius)

Some experimental discharges with $\beta_N \ge 4$ are near the ideal wall n = 1 stability limit

• Effect of wall depends on details of the equilibrium in 3 examples with $\beta_N \ge 4$.

Summary

- The advanced tokamak steady-state scenario required a method to increase achievable β_N in the lower κ , δ pumping shape.
- An increase to $\beta_{\rm N} > 4$ was achieved by a 15% increase in $B_{\rm T}$.
 - $-q_{95}$ is thought to be the key parameter.
 - Improved error field correction may be an enabling factor.
- The higher β_N values cannot be accounted for by an increase in the no-wall β_N limit.
- \bullet Increase in $\beta_{\rm N}$ likely results from a closer approach to the ideal wall $\beta_{\rm N}$ limit.
- Discharges at $q_{95} \approx$ 5, $\beta_{\rm N} \approx$ 4.1 appear to be close to the ideal wall limit.
- Further increases in the ideal wall limit appear possible through changes in profiles.