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Motivation



Motivation: high �N is an important component of the

self-consistent parameter set for a steady-state, advanced

tokamak discharge

� High ��E / (�N=q)(H89=q
�) for fusion power output.

� High bootstrap fraction fBS / �P / q�N for steady state.

� Optimum discharge has relatively high q (including q(0), qmin, q95) for

fBS, high �N for power output.

� High �N enhances o�-axis ECCD eÆciency.

� Low density required for eÆcient electron cyclotron current drive (ECCD).

� Low density requires pumping of H-mode divertor exhaust.
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Background



Optimization of �N was sought within the constraints of the

advanced tokamak scenario

� Prior to upper divertor ba�e installation (1999), �NH89 � 10, �N � 3:7

sustained in � = 2, Æ = 0:9 shape.

� Achievable �N (� 3:4) reduced in lower elongation, triangularity (� = 1:7,

Æ = 0:7) shape compatible with pumping after divertor ba�e installation

(2000).

� 1999-2000 operation at BT = 1:6T for ECCD.

� Data set shows a dependence of the achievable �N on the shape parameter

S = (I=aB)q95.

� Leads to 2001 investigation of the e�ect of variation in shape and q95 (by

changing BT) on achievable �N.

3



HIGH NORMALIZED PERFORMANCE (~10) 
SUSTAINED FOR 5 τE IN κ = 2, δ = 0.9 SHAPE
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OBSERVED βN LIMIT HAS
A SIGNIFICANT DEPENDENCE ON PLASMA SHAPE
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● Experimental scans at constant I/aB

● Comparison between shapes available before and after divertor baffle installation



Experimental results



Experimentally achievable �N increased at higher q95

� �N = 4:1 sustained at BT = 1:85T in � = 1:8, Æ = 0:7 shape

(compared to �N = 3:4 at BT = 1:6T).

� Improvement over �N in the older higher elongation, triangularity shape.

� Provides a satisfactory �N value for an ECCD target.

� No improvement in �N was found by varying the discharge shape near the

pumping geometry.

� �N limited, high performance phase terminated by instability:

{ Resistive wall modes (RWM).

{ ELMs

{ Neoclassical tearing modes (NTM) at m=n = 2=1.

� Maximum �N:

{ Up to 5:5`i.

{ Above the ideal, no-wall n = 1 limit.

{ In some cases, close to the ideal-wall limit.
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● Increasing DRSEP causes a drop in the shape parameter S = (I/aB) q95 and q95 itself 

● 1999-2000 studies indicated variation of RWM β limit with shape parameter and q95

EXPERIMENTAL STUDIES INDICATE
βN INCREASES WITH INCREASING q95
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No systematic variation in �N resulted from many small variations

about the standard pumping shape

� No opportunity to optimize

most shapes.

� Further analysis and modeling

comparison required.
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Pumped Shape Unpumped Shape

βN ~ 4 HAS BEEN ACHIEVED WITH THE UPWARD SHAPE BIAS
REQUIRED TO MAINTAIN DENSITY CONTROL
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ERROR FIELD CORRECTION AND RWM FEEDBACK STABILIZATION
HAVE ALSO BEEN SUCCESSFUL IN IMPROVING THE ACHIEVABLE βN
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Modeling of no-wall limit



Modeling based on ideal n = 1 no-wall theory cannot account for

the changes in �N observed in the experiment

� In contrast to the experiment, the predicted no-wall n = 1 limit:

{ Decreases as q95 increases.

� Scan of BT at constant shape.

� Change in Ip at constant shape.

{ Is lower in the higher elongation, triangularity shape.

� Modeling also predicts that the no-wall n = 1 limit:

{ Is optimized at lower q(0).

{ Is not strongly dependent on details of the

pressure gradient pro�le shape.

� Modeling:

{ Equilibria computed with the code TOQ.

{ Current and pressure gradient pro�les modeled from

measured experimental pro�les.

{ Ideal stability computed with GATO with or without a

conformal wall or a wall at the DIII-D vessel position.
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Stability modeling results show that the marginal value of �N is

constant or decreasing as BT and q95 are increased

� No-wall �N limit for n = 1

from GATO/TOQ.
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No increase in the ideal, no-wall, n = 1 stability limit with extra

shaping has been found in initial modeling results
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Sensitivity of the �N limit to the model pro�les was studied for

the more strongly shaped case

H-mode type J pro�le experiment-type J pro�le

(q(0) � 1:27) (q(0) � 1:6)

H-mode P 0 pro�le 3.52 3.15

Experiment-type P 0 pro�le 3.34 3.62

� �N limit varies by at

most 0.5.

� Strongly shaped

discharge had

an unusually broad

pressure pro�le.
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Effect of an ideal wall



Increases in �N achieved by

exceeding the no-wall limit by a wider margin

� The no-wall limit is

exceeded if the ideal wall

must be present for

stability.

� The more the no-wall limit

is exceeded, the closer the

stabilizing wall must be to

the plasma.
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Maximum �N achievable with an ideal wall determined by

modeling stability versus wall position

� Little di�erence

in response to

change in wall

position as shape

and BT (i.e.

q95) are varied.
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Some experimental discharges with �N � 4 are near the ideal

wall n = 1 stability limit

� E�ect of wall depends on details of the equilibrium in 3 examples with �N � 4.
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Summary



Summary

� The advanced tokamak steady-state scenario required a method to increase

achievable �N in the lower �, Æ pumping shape.

� An increase to �N > 4 was achieved by a 15% increase in BT.

{ q95 is thought to be the key parameter.

{ Improved error �eld correction may be an enabling factor.

� The higher �N values cannot be accounted for by an increase in the no-wall

�N limit.

� Increase in �N likely results from a closer approach to the ideal wall �N

limit.

� Discharges at q95 � 5, �N � 4:1 appear to be close to the ideal wall

limit.

� Further increases in the ideal wall limit appear possible through changes in

pro�les.
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