Dependence of Achievable \(\beta_N \) on Discharge Shape and Edge Safety Factor in DIII-D Steady-State Scenario Discharges

J.R. FERRON, T.C. LUCE, P.A. POLITZER, General Atomics, R. JAYAKUMAR, LLNL, M.R. WADE, ORNL — One line of research in the DIII-D program is development of a high bootstrap-current-fraction \((f_{BS})\) discharge which can be sustained in steady-state with the addition of electron cyclotron current drive (ECCD). High \(f_{BS} \) requires high normalized beta \((\beta_N)\) and effective ECCD requires low electron density \((n_e)\). Target values of \(\beta_N \) are above the limit that would be predicted by theory for ideal, \(n = 1 \) kink modes without a conducting wall so \(\beta_N \) is often limited by \(n = 1 \) resistive wall modes. When discharge shape changes (lower triangularity and elongation) were made to optimize cryopumping to reduce \(n_e \) the achievable \(\beta_N \) values were reduced by about 10% to \(\approx 3.4 \). An increase in \(q_{95} \) of about 15% to near the original value, made by increasing the toroidal field, resulted in consistently higher values of \(\beta_N > 4 \). A similar increase in \(\beta_N \) could not be made by adjusting the shape within the constraints of the cryopumping geometry. Comparison with predictions of ideal MHD theory are presented.

\(^1\)Work supported by US DOE under Contract Nos. DE-AC03-99ER54463, W-7405-ENG-48, and DE-AC05-00OR22725.

Prefer Poster Session

J.R. Ferron
ferron@fusion.gat.com
General Atomics

Special instructions: Poster 12, Stability, MHD, Current Drive, Advanced Tokamak

Date submitted: July 19, 2001

Electronic form version 1.4