Transport Studies in DIII-D with Modulated ECH1

J.C. DEBOO, M.E. AUSTIN, R. BRAVENEC, J.E. KINSEY, J. LOHR, T.C. LUCE, M.A. MAKOWSKI, G.R. MCKEE, C.C. PETTY, R.I. PINSKER, R. PRATER, T.L. RHODES, G.M. STAEBLER, L. ZENG, DIII-D National Fusion Facility — Previous experiments have shown that testing the dynamic response of a plasma to a modulated heat source can provide a more sensitive test of transport models than can a power balance analysis. The Te profile stiffness can also readily be probed by scanning the ECH resonance location. Recent experiments have been performed with up to 2 MW of ECH power modulated at 25 Hz in MHD quiescent, sawtooth-free, L-mode plasmas. Modulations in T_e were observed across the plasma with the ECH resonance at $\rho = 0.8$. Modulations in the amplitude and phase velocity of low-k density fluctuations were also observed near the plasma edge indicating TEM or ITG mode activity. ETG modes may also play a role in electron transport as the measured values of R/L_{Te} are at ($\rho = 0.2-0.6$) or above ($\rho > 0.6$) calculated critical values. Detailed comparisons with simulations based on several different transport models will be discussed.

1Work supported by the US DOE under Contract No. DE-AC03-99ER54463.