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I.  MOTIVATION

● Stabilization of the resistive wall mode (RWM) relies on using external
coils to replenish the magnetic flux diffused through the resistive shell

● In principle, a perfect feedback needs to cover the resistive shell
completely with many feedback coils and sensor loops. This may not be
practical for operations

● The feedback scheme in DIII–D utilizes a set of active coils, covering only
one poloidal segment of the resistive shell on the outboard midplane. The
sensor loops have been moved from outside the resistive wall to its inside

● In the new feedback coil design, three sets of active coils have been
proposed

● Effective and practical design of the feedback system depends on the
size and geometry of the coils, placement of the sensor loops and the
choice of an efficient feedback algorithm

● The purpose of the present work is to provide a model for evaluating the
feedback system and for the detailed comparison with experimental
observation
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II.  FORMULATION FOR GENERAL GEOMETRY

● A formulation is presented for the feedback stabilization of the RWM in
general plasma equilibrium configurations, i.e. the present formulation is
valid for helical plasma confinement systems as well as axisymmetric
confinement systems. The formulation is applicable to the stabilization of
general external plasma modes, i.e., this includes not only the helical
external modes but also the vertical plasma displacements for the
tokamak

● The full solution of the problem consists of three steps:

— The open loop stability problem. This is a generalization of the ideal MH D
stability problem

— Formation of the excitation and sensor matrices of the external feedback coils
and sensor loops

— Solution of the characteristic equations of the closed loop feedback system
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A Non-Self-Adjoint Quadratic Form for the Energy

● A general quadratic form may be obtained for the plasma energy and the
vacuum energies in the presence of the external resistive wall and
feedback coils

δWp + δK + δWv + Dw + δEc = 0 (1)

● The above expression is in general non-self-adjoint. The non-self-
adjointness results from that the energy can be injected through external
coils

● The vacuum region consists of the inner vacuum (IV), between the plasma
and the resistive wall; the outer vacuum (OV), between the resistive wall
and the coil surface; and the external vacuum (EV), outside of the coil
surfaces
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The Forms of the Energy Components
● By using the magnetic potential where δB = ∇ χ

δWp = plasma potential energy

δK = kinetic energy =

             δWv = vacuum energy = δWIV + δW O V + δWEV

  δWI V,OV,EV =

             D w = energy dissipaed in the resistive wall

                  =

            δEc = energy from feedback coils =

● For the resistive wall mode, the plasma kinetic energy is negligible, δK = 0

● Thin wall approximation, in which Bn = ∂χ/∂n is continuous across the
resistive wall has been used
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Schematics of RWM Feedback Analysis with Toroidal Geometry



247–01/MSC/wjQTYUIOP

— Normal Mode Approach to Modeling of Feedback Stabilization of the Resistive Wall Mode — APS, Long Beach California, October 2001

Columbia
University

Magnetic Potential χ and Green’s Function Solution

● The magnetic field on the plasma surface and resistive shell are
formulated with scalar potential

B  =  ∇ χ

● With Green’s theorem

      4πχ χ χ→
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Solution for χ on the Surfaces

● The scalar potential, χ , for the magnetic field in the vacuum is solved by
the methods of Chance, Phys. Plasmas 4 (1997) 2161.  It calculated χ  as a
response to the magnetic perturbations on the surface in the vacuum, i.e.,
the plasma, resistive shell, and feedback coil.  We thus have the relations
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Resistive Wall Thin Shell Approximation

●   Introducing “skin current stream fluction” Kw: j =   Z x   Kwδ (z – zw)
●   Normal magnetic field continuity ∂χ  / ∂n (–) = ∂χ  / ∂n (+) = Bn
●   Ampere’s law: χ(+) – χ (–) = Kw
●   Faraday’s law

∆ ∆
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The Resistive Tank Eigenfunctions and DW

● The solution can be effected through the following eigenvalue problem

∇   •  [η  |∇ z|2 ∇ Ki]   =   –|∇ z|2 ωiKi (2)

the eigenfunctions satisfies the ortho-normality relation

∫ W KiKj |∇ z|2 dV  =  δij (3)

So that if
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Examples of The Resistive Tank Eigenfunctions

●  The resistive tank eigenfunctions can be either odd or even
with respect to the midplane

●   m = 0 to m = 5 lowest order poloidal odd (top) and even
(bottom) eigenfunctions of the resistive shell eigenmodes with
the inclusion of the effect of the plasma
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III.  THE OPEN LOOP FEED BACK PROBLEM

● During the open loop operations, δEC = 0.  The outer vacuum region and
the external vacuum regions merge into one OV region.  We are left with

δWp  + δWIV  + δWO V  + D W   =  0 (7)

● We note that in the above expression, since the magnetic potentials
satisfies the Laplace equation ∇ 2χ  = 0, the vacuum energy may be written
in terms of surface integrals

 (8)

 (9)

● In the above expressions, Eqs. (8) and (9) for the vacuum energies, the
normal magnetic fields at the plasma and resistive wall surfaces are the
source and the magnetic potentials are the response.  These relations are
solved by the VACUUM Code.  The open loop expression is self-adjoint
with DW given in Eq. (6).
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The Open Loop Eigenfunctions

● With ∂/∂t = γ, it forms an eigenvalue problem.  This is a generalized energy
expression from that of ideal MHD.  It gives us a set of orthonormal
eigenfunctions with countable eigenvalues.

δWp(i,j) + δWI V(i,j) + δWOV(i,j) +    γiδi,j = 0  (10)

and

Dw(i,j) =      γiδi,j  (11)

● A part of this diagonalization has been done by DCON, i.e., with the
∂χW /∂n = 0.  Our diagonalization utlizes the eigenfunctions and
eigenvalues given  by DCON together with the eigenfunctions given by the
resistive tank eigenfunctions.  This set is complete for arbitrary skin
current distribution on the resistive wall.

1
2

1
2
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Example TOQ Equilibrium and DCON Stability Results

●  DIII—D equilibrium with high Elongation and Triangularity

●  An equilibrium unstable with the wall at infinity and stable with
a nearby conducting wall

δW↑

βN = 2.06 βN = 2.13

→ Mode number 
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Wall Current of the Open Loop Eigenfunction
●  Lowest two eigenfunction

●  Skin currents on the resistive wall induced by the open loop eigenfunction.
On the left is the lowest mode, on the right is the second lowest mode

θ θ

φ

Unstable
Mode First

Stable
Mode
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Wall Current of the Open Loop Eigenfunction (II)
●  Next two eigenfunction

●  Skin currents on the resistive wall induced by the open loop eigenfunction. 
On the left is the third lowest mode, on the right is the fourth lowest mode
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IV.  THE CLOSED LOOP FEEDBACK PROBLEM

● During the closed loop operation, because the set of open loop
eigenfunction is complete, the normal magnetic field on the resistive wall
can be expanded in terms of this set of eigenfunctions.  From the
boundary conditions, the perturbation inside the inner surface of the
resistive wall is completely determined if the value of the magnetic field is
given on the resistive wall.  The magnetic potential needs to deviate from
a superposition of the open loop eigenfunctions only in the region outside
of the outer surface of the resistive wall.  Or in the OV and EV regions

 (12)

● The        not only satisfies the Laplace equation,               but also
satisfies the condition that it has no perpendicular magnetic field at the
resistive wall,                   .
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The Closed Loop Feedback Equations

● Substitution of Eq. (12) into the energy Eq. (1), and utilizing the properties
of the open loop eigenfunctions, we obtain a set of time evolution
equations for the amplitudes for the open loop eigenfunctions αi

 (13)

● In the above expression, i is the label for the open loop eigenfunction; the
      gives the excitation of the open loop eigenfunctions by the external
coils.  They are given by the expression

 (14)

● The feedback system is completed by the equations that prescribes the
currents in response to the amplitudes of α i.  They are written in general
as

 (15)

● In here, l is the index for the sensor loops and     is the amplifica-tion
matrix and Fl is the flux detected by the sensor loop.  The above set of
equations is the general feedback equation for RWM
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Example of Feedback Coil in DIII–D Geometry

● Left is the coil geometry. Right is the excitation potential
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V.  THE CHARACTERISTIC EQUATIONS

● The basic equations for the RWM derived in the previous viewgraph can
be used for the time-dependent simulation of the feedback system.  More
insight may be obtained by studying the characteristics of the system.  We
assume that the Fls can be approximated by linear functions.  If we let s =
∂/∂t then the system of equations are given by

 (16)

● Here    is the response matrix,    is the state vector of the plasma-resistive
wall system (α i,Ic) and    is the identity matrix.  The form of     is given by

 (17)

● In here Γ ij = γiδij is a diagonal matrix, Eic =      is the excitation matrix and
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V.  THE CHARACTERISTIC EQUATIONS (Cont.)

● The characteristic equation is given by the determinant of

 (18)

● It is interesting to note that when the sensor loops are inside of the
resistive wall, then                .  Then the L matrix is also diagonal.  The
way the amplification matrix comes into the equation is substantially
modified.  The examples provided below will show that it is always more
stable than the case when the sensor loops are outside or when
               .
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Central Coil Alone Not Sufficient for Stabilization of βN = 2.5

● Left is the root trajectory with one central segment of feedback coils only and with no
filtering of the signal from the stable modes. Right is the root trajectory with filtering
(filtering factor of 0.15)

Filtering factor f:  Fci → f Fci for all stable modes
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Summary of Results for the DIII–D Equilibria with Different βN’s

● Left is the growth rate and feedback requirements of the RWM as a function of βN. Red is
the growth rate. The green and blue curves are the filtering factors of the sidebands that
are required to stabilize the RWM. With three segments of coils feedback stabiliza-tion is
feasible for equilibria with γτw up to 30 (with upper and lower segment size equal to that of
the midplane.) Right is the flux ratio and phase angle difference due to the RWM on the
upper (lower) and the midplane coil segments as a function of the size of the coils.
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Three Band Feedback Sufficient for Equilibria with βN = 2.5

● Left is the trajectory of growth rates; right is the frequencies of the roots of the
characteristic equation for different gain factors by using three bands of coils and
without filtering of the signal from the stable
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VII.  CONCLUSION

● A formulation is presented for the feedback stabilization of the RWM in
general plasma.

● The full solution of the problem consists of three steps:

— The open loop stability problem. This is a generalization of the ideal MHD
stability problem.

— Formation of the excitation and sensor matrices of the external feedback coils
and sensor loops

— Solution of the characteristic equations of the closed loop feedback system

● This formulation has been numerically implemented for the toroidal
geometry and can be used to study the detailed dynamical behavior of
plasmas in feedback experiments.

● An increase in the number of coil segments from the central segment only
to include the upper and lower bands in DIII–D geometry can have a
substantial stabilization effect.


