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INTRODUCTION

● Owing to superior energy confinement, H–mode operation is the choice for next
step tokamak devices based either on conventional or advanced tokamak
physics

● This choice has a significant cost because of effects of ELMs
— Pulsed heat load to divertor plates can lead to rapid erosion
— Giant ELMs can couple to core MHD modes and limit beta
— Giant ELMs can also destroy core transport barriers required to create optimized AT

plasmas

● Recently created quiescent double barrier H–mode plasmas demonstrate a
possible solution to these problems by combining
— ELM-free, controlled density H–mode edge
— Reduced core transport region (internal transport barrier)

● Quiescent H–mode edge has H–mode edge transport barrier plus
— No bursting edge behavior associated with ELMs
— Controlled density and radiated power levels
— Potential for steady-state operation

★ 3.5 s or 25 τE achieved to date

★ Duration limited only by machine hardware constraints
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INTRODUCTION (Continued)
● Combined edge and core transport reduction yields high performance

— H89 ≤ 2.4, βN ≤ 2.9, βT ≤ 3.9%
— βNH89 = 7 for 10 τE

● This poster discusses the quiescent H–mode edge plasma
— Companion poster by E.J. Doyle focusses on the additional core barrier physics
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KEY QUESTIONS FOR QUIESCENT H–MODE

● Is quiescent H–mode really H–mode?

● Do the edge gradients change when ELMs go away?

● What are the plasma conditions required for quiescent H–mode operation?

● How is the density controlled?

● What is the nature of the edge harmonic oscillation?

● What is the relationship to enhanced Dα (EDA) operation in C-Mod?

● Why do the ELMs go away?



THE PLASMA EDGE DURING 
THE QUIESCENT PHASE IS AN H–MODE EDGE
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● Edge gradients in 
quiescent phase are 
comparable to those 
in ELMing phase

— Note high Ti pedestal

● QH–mode edge also has 
other standard H–mode 
signatures

— Edge Er well

— Reduced turbulence
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EDGE ∇Pe DOES NOT CHANGE WHEN ELMs DISAPPEAR 
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QUIESCENT H–MODE OPERATION SEEN
OVER BROAD RANGE OF PLASMA CONDITIONS

● Key conditions are

— Neutral beam injection counter to plasma current at power levels
above 3.0 MW

— Cryopumping to reduce the neutral pressure and edge density
(pedestal density typically 1.2×1019 m–3)

— Sufficient distance between plasma edge and wall on low toroidal
field side (~10 cm)

● Quiescent operation seen

— In single-null plasma with ion ∇B drift both towards and away
from X–point (double-null not yet attempted)

— Over entire range of triangularity (0.16 <= δ <= 0.75) and
q (3.7 <= q <= 5.8) explored to date

● Most work done with 1.0 <= Ip (MA) <= 1.6 and 1.8 <= BT (T) <= 2.1

— Also have quiescent H–mode examples at 0.67 MA and 0.95 T



QH–MODE EDGE HAS LOWER PEDESTAL DENSITY AND 
HIGHER TEMPERATURE THAN CONVENTIONAL ELMING H–MODE 
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QUIESCENT OPERATION IS USUALLY ASSOCIATED WITH THE
PRESENCE OF AN EDGE HARMONIC OSCILLATION (EHO)

● EHO is seen on magnetic, density and electron temperature fluctuation diagnostics
during Q H-mode operation

— Quiescent operation also obtained with a global 1/1 mode (single example)
● Toroidal mode mixture (amplitude and harmonic content) can change spontaneously

— Edge profiles, density and impurity control not sensitive to mode mixture
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QUIESCENT H–MODE OPERATION HAS MODERATE HEAT FLUX
TO THE DIVERTOR TARGET PLATES

● Edge harmonic oscillation spreads heat flux?
● Note that present-day devices can match anticipated core or edge reactor

conditions, but not both
— Reactor relevant core plasmas in present-day devices may have

non-optimal divertor conditions
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EDGE HARMONIC OSCILLATION SEEN ON
Bθ AND DENSITY DIAGNOSTICS
•

● Presence of Bθ signal demonstrates significant electromagnetic 
 component to oscillation

•

255-00/rs

S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY

100

Magnetic Probe Phase Contrast
Imaging

R–Rsep = –5 mm
10–1

10–2

Po
w

er

Po
w

er

10–3

10–4

10–5

0

Shot 103819
2800–2810 ms

20 40
Frequency (kHz)

60 80

10–5

10–6

10–7

10–8

10–9

0 20 40
Frequency (kHz)

60 80

n = 1

n = 22

3

3

4
4

5

5

6
6



Dα RADIATION RISES THROUGHOUT DIVERTOR AND ne DROPS
WHEN EDGE HARMONIC OSCILLATION STARTS
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DIVERTOR LANGMUIR PROBES SHOW EDGE HARMONIC 
OSCILLATION MODULATES PARTICLE FLUX

TO DIVERTOR PLATE FROM SCRAPE OFF LAYER
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THE EHO CAUSES PARTICLE TRANSPORT — EHO MODULATES 
BOTH PARTICLE FLUX TO DIVERTOR AND SOL DENSITY PROFILE

183-01/rs

● Divertor Langmuir probe Isat signal
 shows particle flux is modulated at 
 EHO frequencies 
 — EHO harmonics account for ~100% 
  of the total flux to the probe

● High resolution profile reflectometer 
 system shows scrape-off layer (SOL) 
 density profile is modulated at EHO 
 frequency
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THE EDGE HARMONIC OSCILLATION (EHO) IS 
LOCATED AT THE BASE OF THE EDGE DENSITY PEDESTAL
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● High time resolution 
measurements with profile 
reflectometer system indicate 
that the EHO is located at 
the base of the edge profile 
pedestals, at or slightly 
outside the separatrix
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MAXIMUM IN ñ LOCATED CLOSEST TO MAXIMUM GRADIENTS IN Er AND Vφ
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TYPICAL VARIATION OF EHO PHASE WITH RADIUS SHOWS 
NO SIGN OF TEARING LAYER INSIDE SEPARATRIX

● Phase varies continuously — no 180° reversal across a tearing layer
● n measurement from BES radial array~
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RADICALLY DIFFERENT RADIAL PHASE STRUCTURE DEMONSTRATES 
THAT EHO IS NOT A TEARING MODE LOCATED AT RATIONAL q 

SURFACE INSIDE PLASMA

● n measurement from BES radial array~
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BES AND POLOIDAL MAGNETIC PROBE ARRAY 
GIVE POLOIDAL WAVELENGTH AROUND 1 m
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● Phase shift from BES poloidal
 array gives λ ~ 1 m for n = 2
 harmonic
 — Array only covers 10 cm

● Poloidal magnetic probe array
 has λ – 1.3 m for n = 2 harmonic
 — Reasonable agreement with
  BES given uncertainty in
  measurements
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EDGE HARMONIC OSCILLATION IS NOT A SATURATED ELM PRECURSOR

● Early in shot before ELMs are
 completely gone, edge harmonic
 oscillation sometimes appears
 between ELMs

● Edge harmonic oscillation
 has different magnetic
 signature than ELM precursor
 — Edge harmonic oscillation
  can disappear before 
  ELM happens
 — Frequency spectrum of ELM
  precursor is much broader, contains 
  frequency components much below 
  and much above those in edge 
  harmonic oscillation
  ★ Lowest frequency components
   are ones that appear first
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EHO SEEN IN SOME CO-INJECTED DISCHARGES 
WITH CRYOPUMPING TO LOWER DENSITY
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●   Dα baseline rises after EHO onset in both co- and counter-injection cases
●   Quiescent H–mode NOT seen with co-injection
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CHARACTERISTICS OF THE EHO ON DIII–D AND
COMPARISON TO THE ELM-FREE EDA H–MODE ON C–MOD

Edge Harmonic
Oscillation

(DIII–D)

Quasi-Coherent
Mode

(C–Mod)

Increase Dα level in divertor Yes Yes

Increase particle transport
across separatrix

Yes Yes

Location Foot of edge barrier Edge density barrier

Frequency 6–10 kHz (n=1) 60–200 kHz

Frequency spread
∆f (FWHM)/f

0.02 0.05–0.2

Toroidal mode number Multiple, variable mix n=1–10 Unknown

Poloidal wavelength ~100 cm (m~5) ~1 cm

Edge ion collisionality Collisionless Collisional

● Different edge modes on two different machines both generate ELM-free
H–mode operation
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FUNDAMENTAL QUESTION:  WHY DO ELMs GO AWAY?

Two types of hypotheses explain this

● Edge harmonic oscillation lowers edge pressure gradient below
MHD stability limit

— Not consistent with measurements

— Pressure gradient doesn’t change as ELMs go away and
amplitude of edge harmonic oscillation increases

● Stability boundary has moved

— Finite Larmor radius stabilization by beam ions??

— Change in edge current density??

— E×B shear effects owing to very deep Er well at plasma edge??



EDGE RADIAL ELECTRIC FIELD WELL IS DEEPER IN QUIESCENT PHASE
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● CER data show much 
deeper Er well in counter- 
injected quiescent H–mode 
than in co-injected 
ELM-free shot

● CER data show much 
deeper Er well in 
quiescent phase than 
in ELMing phase of 
same discharge
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CONCLUSIONS

● Quiescent H–mode has the steep edge gradients characteristic of H–mode

● Quiescent H–mode operation requires counter-neutral beam injection plus
cryopumping to lower the edge density

● Quiescent H–mode has constant density and radiated power levels without
ELMs
— Edge harmonic oscillation or, in one case, a core tearing mode provide the

additional particle transport which allows constant density ELM-free operation

● The EHO is a non-sinusoidal electromagnetic oscillation which is localized just
outside the separatrix
— Radial structure is distinct from that expected due to a tearing mode on the q=3 or

q=4 surface
— EHO is not a saturated ELM precursor

● Quiescent H–mode is quite different from enhanced Dα (EDA) operation in
Alcator C-Mod

● Why the ELMs go away is a major open issue for future work
— Strong Er gradients near plasma edge suggests a role for Er shear in ELM

stabilization
— Including this effect in MHD stability theory is difficult but extremely important




