TEARING MODE ONSET AND EVOLUTION STUDIES ON DIII-D

D.Brennan[°], M. Chu, S. Kruger¹, R. La Haye, T. Luce, A. Pletzer², P. Politzer, E.J. Strait, T. Taylor, A. Turnbull

General Atomics, San Diego, CA

¹SAIC, San Diego, CA ²PPPL, Princeton, NJ ^YOak Ridge Institute of Science and Education (Currently at GA)

RESISTIVE STABILITY ANALYSES INDICATE A CLASSICAL ONSET MECHANISM FOR NTMs IN DIII-D

- Stability analyses of highly accurate MSE kinetic efits are compared to the experimental onset of tearing modes.
- Poles in Δ' are shown to exist in β space as the ideal stability boundary is approached.
- The standard deviation of Δ' in these equilibria are shown to support the occurrence of a pole in Δ' .
- The modified Rutherford equation is integrated for a time dependent Δ', and an experimental approach is proposed to determine if the poles are actually affecting island growth.
- Equilibria near the ideal stability boundary in β are also being used as initial values in NIMROD to model the non-linear evolution of the modes.

THE ORIGINS OF 3/2 TEARING MODE IN A LOW q_{min} H MODE SHOTS IS THOUGHT TO BE NEOCLASSICAL

A 2/1 MODE APPEARS IN A HIGH q_{min} DISCHARGE WITHOUT AN OBVIOUS IDEAL MODE CAUSING A SEED ISLAND

TEARING MODES IN A HIGH q_{min} PLASMA ARE DETERMINED TO BEGIN CLASSICALLY

* Early times show saturated low amplitude islands and positive Δ' * As the shot progresses, q_{min} decreases, large 2/1 Δ' causes island growth * The saturation may depend on the reduced Δ' and helically perturbed J_{bs}

TEARING MODES IN A LOW $\mathbf{q}_{min}~$ H-MODE PLASMA ARE CALCULATED AS BEING INITIALLY CLASSICALLY UNSTABLE

* Although ideal modes are near marginal stability, they are stable for these calculations
* The tearing mode becomes neoclassical as it grows large

A q SCALING SHOWS A POLE IN Δ' AT THE ONSET OF AN IDEAL MODE

Δ' becomes large and positive on the stable side of the ideal boundary

As an ideal stability boundary is approached, a pole in Δ' can cause rapid growth of a tearing 50 $_{\rm T}$ mode.

This may be another mechanism for the onset of NTMs

As the pole is approached at varying rates, the island should first appear on the diagnostics at lower values of β for slower increases in β . This should be a distinctly different dependence than for forced reconnection.

The Modified Rutherford Equation is Integrated to Determine Island Evolution on Approach to a Pole

The dependence of the β at which the island reaches 1cm width should then monotonically increase with d β /dt

THE MODE STRUCTURE EVOLUTION ON APPROACH TO A POLE IS BEING STUDIED WITH NIMROD

The nonlinear evolution of tearing modes near ideal stability boundaries are be studied with NIMROD in two ways:

1. A series of equilibrium reconstructions on the approach to the onset of a mode are being used as initial conditions, and the Δ' and saturated island widths will be compared to the linear results.

2. Equilibria will be evolved with β increasing in time, approaching the ideal stability boundary and the Δ' pole.

The effects of profiles and shaping on the nonlinear evolution of tearing modes can be accurately studied.

CONCLUSIONS

- <u>\[]
 \[]
 \[]
 calculations suggest that tearing modes may begin
 classically unstable.

 </u>
- Theoretical analysis suggests that poles due to ideal stability boundaries may be responsible for the onset of tearing modes in some discharges.
- An experimental test for the occurrence of this onset mechanism is to vary dβ/dt near the onset point of an NTM.
- This problem would undoubtedly be best modelled by the non-linear initial value code NIMROD.

