Reduced transport near rational q-surfaces in DIII-D NCS plasmas

M.E. Austin, K.H. Burrell, K.W. Gentle, R.J. Jayakumar, J.E. Kinsey, T.L. Rhodes, L. Zeng

Introduction

• Spontaneous jumps in core temperature have been observed in a class of DIII-D discharges under steady-state heating conditions

- Discharges are low n_e L-mode with early NBI-->creates hollow current profile and negative central shear (NCS) q profile
- Temperature changes appear to be related to low-order rational q surfaces in the plasma.

Questions:

– How closely are the temperature jumps connected to low-order q?

– What are the changes in transport implied by the temperature jumps?

Jumps in $T_{\rm e}$ occur near integer $q_{\rm min}$ in DIII-D NCS discharges

Jumps also seen in $T_{\rm i}, v_{\phi}$.

These $T_{\rm e}$, $T_{\rm i}$, v_{ϕ} excursions are common for low density, low power discharges with early NBI.

The jumps can be step-wise are transient in nature.

As the density is increased in these discharges, the effect goes away.

Time histories of q(r) and ECE data are used to correlate times

Evolution of q varies over a series of shots with different densities and beam powers.

Time of q_{min} = rational is determined by interpolation of fits to q_{min} vs time.

ECE data displays a reproducible "hiccup" in the temperature rise.

Temperature Kick-ups Correlate with Rational q_{min} Values

- Data are from a dedicated 1 1/2 day experiment.
- The x-axis is the time that q_{min} passes through the rational value, determined from a fit to q_{min} vs time obtained from MSE EFITs.
- The y-axis is the time of the start of the jump in temperature.

Temperature jumps do not correlate with rational values of q_95

Transport Analysis

- In order to determine where the changes in χ_e are occurring, a simple transport code is employed.
- Inputs are the power to the electrons and the time history of $T_{\rm e}$ profile from the ECE radiometer.

Diffusivity as a Function of Time

Transport coefficients at several radii dip just before and after q_{min} traverses 2.

Transport equation

$$\frac{3}{2} \frac{\partial n_e T_e}{\partial t} + \nabla \cdot q_e = S_e$$
$$q_e = -n_e \chi_e \cdot \nabla T_e$$

Is transport improvement due to good magnetic surfaces near rational q values?

- EFITs with MSE data show q profiles with the low-shear region just above and just below q=2 bracketing the time of improved transport.
- Lower plot indicates allowed values of q=m/n for low-ordered modes showing gaps near integer and halfinteger values.

Summary

• Both transient and step-wise transitions to improved confinement in lowdensity NCS discharges are connected with the minimum in the q profile passing near low-order values.

• There is no correlation with rational q_{edge} or q_0 values. Jumps are largest for $q_{min} = 3, 2, \& 1.3$ but are also seen for other rational values.

• There is evidence that the transitions are related to good magnetic surfaces near rational q_{min} . Transport is seen to improve at locations away from the low-shear region in simple model simulations.

