Overview of the 2001 DIII–D Experimental Campaign

S. L. Allen and the DIII-D Team

Presented at the American Physical Society Division of Plasma Physics Meeting Long Beach, CA

October 30, 2001

DIII–D National Program is a Multi-Institution Collaborative Effort

Control

NATIONA	L LABS	UNIVERSITIES	INTERNATIONAL LABS
ANL		Alaska	ASIPP (China)
INEL		Alberta (Canada)	Cadarache (France)
LANL		Cal Tech	CCFM (Canada)
LLNL		Chalmers U. (Sweden)	Culham (England)
ORNL		Columbia U.	FOM (Netherlands)
PNL		Georgia Tech	Frascati (Italy)
PPPL		Hampton U.	loffe (Russia)
SNLL		Helsinki U. (Finland)	IPP (Germany)
		Johns Hopkins U.	JAERI (Japan)
		Lehigh	JET (EC)
		MIT	KAIST (Korea)
CompX		Moscow State U. (Russia)	KBSI (Korea)

CPI (Varian) GA Gycom Orincon Creare **FAR Tech** Gycom **HiTech Metallurgical** IR&T Surmet Thermacore **TSI Research**

RPI **U. Maryland U. Texas** U. Toronto (Canada) U. Wales (Wales) **U. Washington U. Wisconsin** UC Berkeley UC Irvine UCLA UCSD

Keldysh Inst. (Russia) KFA (Germany) Kurchatov (Russia) Lausanne (Switzerland) NIFS (Japan) Troitsk (Russia) SWIP (China) Southwestern Inst. (China) Tsukuba U. (Japan)

DIII-D Progress in 2001 in Advanced Tokamak – AT– Physics

Focus Areas in 2001 (Thrusts):

- Resistive Wall Mode (n=1 kink): Sustaining Rotation and Controlling Error Fields enables higher β operation
- Neoclassical Tearing Mode (3/2): Local ECCD controls 3/2 mode (even with sawteeth) and allows higher β operation
- Pedestal Studies: Model predicts n_e pedestal width (at low T_e), Non-dimensional scaling studies with C-MOD are promising
- Internal Transport Barriers: Quiescent Core and Edge Barriers in Te and Ti, H-mode edge, no ELMS, (high-Z impurities!)
- –*AT* Scenario Development: Use RWM stabilization for higher β target, target plasma optimized (shape, q-profile)

DIII-D Progress in 2001 in Advanced Tokamak –AT– Physics

Topical Science Areas:

- Heating and Current Drive: ECCD efficiency increases with β_e -- agrees with models
- *Transport and Confinement:* Comparison of measured correlation lengths with analytical and numerical models
- *Divertor and SOL:* Main chamber may play an important role in impurity levels; efficient H-mode density control
- Stability: Roles of interchange and internal kink stability in the sawtooth were studied in "bean" and "oval" shaped plasmas

Error Field Control and Stabilization Of RWM Results in HIGHER β

- Stable high pressure operation important for -*AT* Tokamak
 - Fusion power ~ $(Pressure)^2$
 - n=1 Kink mode can limit performance
- "Resistive wall mode" is stabilized by:
 - Minimizing error fields
 - Maintaining plasma rotation

• External Active control coils are used in feedback loop with magnetic sensors

β_N is Maintained Well Above the No-Wall Limit for 1.5 Seconds

RWM Stabilization (low rotation) and Error Field Optimization will be Studied with New Internal Coils

NATIONAL FUSION FACILIT SAN DIEGO

VALEN Calculations

2 Prototype Coils In 2001

Steerable ECCD is a Important Control Tool on DIII-D

NATIONAL FUSION FACILITY

241-01/rs

Localized ECCD Stabilizes NTM and Results in Higher β_{N} Operation -

Even with Sawteeth Present

OFF-AXIS ECCD EFFICIENCY AT HIGH ELECTRON BETA IS CONSISTENT WITH -AT- TARGET

SAN DIEGO

Improvements:

- Error Field and RWM control
- Density control in AT shape
- Current drive efficiency consistent with predictions
- Bootstrap fraction 65%
- q-profile control: 3/2 NTM controlled, working on 2/1 NTM control

PROGRESS IN OPTIMIZING TRANSPORT BARRIERS --Quiescent Double Barrier (QDB) Mode

High-Z Impurity Accumulation Is An Important Issue for Long Pulse QDB Discharges

The Plasma Edge of the QDB plasma is an H – Mode Edge

- Edge gradients in quiescent phase are comparable to those in ELMing phase
 - Note high T_i pedestal
- QH-mode edge also has other standard H-mode signatures
 - Edge E_r well
 - Reduced turbulence
- ELMs are replaced by a coherent MHD mode, the edge harmonic oscillation (EHO)

C-MOD and DIII-D PEDESTALS SHOW "Nondimensional " Scaling

- Plasma shapes and q matched
- Maintain constant v^* , ρ^* , β and Scale T_e and n_e in the Pedestal
- Reasonable agreement

INTERMITTANT CONVECTIVE TRANSPORT IMPORTANT, ESPECIALLY FOR IMPURITY GENERATION

- BES shows largest effect in L-mode, decreases in H-mode
- Probes show similar "blobs" of plasma

 Play a role in main chamber recycling and impurity sources

Controlled Plasma Termination with High Pressure Noble Gas Injection Inhibits Fast Electrons

- Simple high pressure gas Jet preemptively terminates plasma
- Reduces disruption effects
 - Low thermal loads
 - 99% radiation
 - Low mechanical stress
 - reduces "halo" currents
 - No fast electrons
- Next shot returns to high performance

DIII-D Progress in 2001 in Advanced Tokamak – AT– Physics

DIII-D Presentations:

- Monday morning
 - morning --Resistive Wall Mode: *Garafalo* --Neoclassical Tearing Mode: *La Haye*

• Wednesday:

- morning--QDB and Impurities: Westafternoon--Pedestal studies: Groebner
 - --Poster Session

• Thursday:

- morning --more oral talks
- afternoon --Avalanches: Politzer
 - --Poster Session

• Friday: morning

--Turbulence scale lengths: *Rhodes* --Gyrokinetic modeling: *Waltz*

