Overview of the 2000 DIII–D Experimental Campaign

by

J.S. deGrassie
and The DIII–D Team

Presented at
the American Physical Society
Division of Plasma Physics Meeting
Quebec City, Canada

October 25, 2000
DIII–D Mission: To establish the scientific basis for the optimization of the tokamak approach to fusion energy production

DIII–D Focus: Advanced Tokamak (AT) research
DIII–D Mission: To establish the scientific basis for the optimization of the tokamak approach to fusion energy production

DIII–D Focus: Advanced Tokamak (AT) research

- Areas of focus on DIII–D have been defined as THRUSTS
- Year 2000 Research Areas

A.T. Divertor

EC
Electron Cyclotron

RWM
Resistive Wall Mode

ITB
Internal Transport Barrier

A.T. Thrust - High bootstrap fraction scenario
DIII–D Mission: To establish the scientific basis for the optimization of the tokamak approach to fusion energy production

DIII–D Focus: Advanced Tokamak (AT) research

- Areas of focus on DIII–D have been defined as THRUSTS
- Year 2000 Research Areas

A.T. Divertor
Electron Cyclotron
Resistive Wall Mode
Internal Transport Barrier

A.T. Thrust - High bootstrap fraction scenario

Topical Science Areas
Develop scientific understanding for Thrusts and general tokamak physics

Boundary
Confinement
Stability
Heating & CD
ADVANCED TOKAMAK PROGRESS
LONG PULSE, STEADY, ELMing H-MODE
$\beta_N H_{89P} \sim 7 \tau/\tau_E \sim 35$

- NBI power is feedback controlled on plasma beta at $\beta_N = 2.7$
- Density is controlled with divertor pumping
- Luce MO1.002
- Wade CI2.001

Normalized Beta $\beta_N = 2.7$

Plasma Current Flattop 6.3 s

Density $= 3.6 \times 10^{19} \text{ m}^{-3}$
DIVERTOR-2000 CONTROLS DENSITY AND IMPURITY LEVEL

- Accurately contoured band of carbon tiles
- Accurate tile alignment prevents hot spots
- Reduced carbon

Old

New

1 mm

2.5 mm

0.1 mm

0.62 mm
DIVERTOR-2000 CONTROLS DENSITY AND IMPURITY LEVEL — 50 MJ INPUT

- Density feedback regulated with divertor pumping
- Heat Input (MJ)
- Peak Tile Temperature (°C)
- Z_{eff} < 2

Old
- 1 mm
- 2.5 mm

New
- 0.1 mm
- 0.62 mm

Lasnier MO1.013
Isler MO1.014
REAL-TIME STRIKE POINT AND SHAPE CONTROL ACHIEVED FOR DIVERTOR PUMPING

- Outer strike point sweep to control pumping

- Density exhaust depends sensitively on strike point locations

Graph showing sweep outer strike point and inner strike point fixed, with line-avg density (10^19/m^3) over time (ms) for unpumped and pumped conditions.
PROGRESS IN FEEDBACK STABILIZATION OF THE RWM

- Strait MO1.003
- Garofalo MO1.004
- Okabayashi GI1.005

MODELING AGREES WITH EXPERIMENT

HIGHER β_N WITH INTERNAL SENSORS, FUTURE UPGRADED C–COIL

FEEDBACK TURN-ON TIME

NO-WALL LIMIT (approx.)

RWM AMPLITUDE

MODE CONTROL + DERIV. GAIN

NO FEEDBACK

PLASMA TOROIDAL ROTATION

$\rho \sim 0.5$

Time (ms)

1100 1200 1300 1400 1500

101953 101956

G

Modeling agrees with experiment

Higher β_N with internal sensors, future upgraded C–coil
HIGH POWER EC SYSTEMS (110 GHz) FOR AT PROFILE CONTROL COMING ONLINE

- J. Lohr MO1.005
 New Diamond Window Gyrotron

- 1 MW Class Gyrotrons

- 2000 Experiments with 2-3 gyrotrons

- 2001 Experiments with up to 6 gyrotrons

- PPPL articulating launcher invaluable for physics productivity – necessary to exploit EC as an AT tool

- CPI Gyrotron
- Mirror Interface Unit
- GA Dummy Load
- Cryomagnetics Magnet
- PPPL / GA Support Tank

Independently rotatable toroidally
EC RESULTS INDICATE AN EFFECTIVE A.T. CONTROL TOOL

- Localized, off-axis, current drive in ELMing H–mode discharges

 R. Prater MO1.006
 Y.R. Lin-Liu MI1.003
 L.L. Lao NP1.079
 C.C. Petty NP1.080

\[\delta J = \delta \nabla \times B / \mu_0 \]

ECCD Profile Prediction (Toray-GA)
EC RESULTS INDICATE AN EFFECTIVE A.T. CONTROL TOOL

- Localized, off-axis, current drive in ELMing H–mode discharges
 R. Prater MO1.006
 Y.R. Lin-Liu MI1.003
 L.L. Lao NP1.079
 C.C. Petty NP1.080

- Complete suppression of neoclassical tearing mode (NTM) with Co-ECCD

- Precise localization of ECCD required for NTM stabilization
 T. Strait MO1.003
EC HEATING DRIVES ELECTRON ITB

- Prater MO1.006
- Doyle MO1.007
- Greenfield GP1.112

- 0.8 MW ECH applied at $\rho \sim 0.4$; no NBI
- Co–ECCD in this case; counter and radial ECH also drive ITB

T_e (keV) vs. t (ms) graph showing large T_e gradient for ECE channels.
ITB THRUST USES COUNTER NBI - DISCOVERS NEW OPERATING MODE
QUIESCENT DOUBLE BARRIER (QDB)
TWO BARRIERS, NO SAWTEETH, NO ELMs (QH-MODE EDGE)

\[P_{\text{NBI}} (\text{MW}), \quad P_{\text{rad}} (\text{MW}) \]

\[\beta_N H_{89} \sim 7 \]

\[q_0 > 1 \]

\[\langle n_e \rangle (10^{19} \text{ m}^{-3}) \]

\[ELM-free \]

\[I_p (\text{MA}), \quad \Rightarrow \text{Counter NBI} \]

\[\text{Time (s)} \]

\[\text{Doyle MO1.007, Burrell BI1.002, Greenfield GP1.112} \]
OTHER EXPERIMENTS DONE IN THE TOPICAL SCIENCE AREAS

<table>
<thead>
<tr>
<th>BOUNDARY</th>
<th>CONFINEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahdavi M01.011</td>
<td>Fundamental turbulence studies</td>
</tr>
<tr>
<td>high density + good confinement</td>
<td>H-mode physics</td>
</tr>
<tr>
<td></td>
<td>Nondimensional transport studies</td>
</tr>
<tr>
<td></td>
<td>Core transport physics</td>
</tr>
</tbody>
</table>
Edge flow reversal may hold key to old mystery of power threshold being lower with ion ∇B drift toward X–point

L–Mode discharges, 1 MA, 2.1 T, NBI = 1.9 MW
three turbulence diagnostics observe flow reversal in target discharge

Midplane Langmuir probe also sees flow reversal (R. Moyer, UCSD)
L–MODE CONFINEMENT DEGRADES WITH ELONGATION, H–MODE IMPROVES

Confinement TSA experiment - dimensionally similar discharges
Each pair has same l, B, n, R, a, T(ρ) (Heating power varied)

Larger κ => more NBI
Larger κ => less NBI
OVERVIEW OF THE 2000 DIII–D EXPERIMENTAL CAMPAIGN

- AT Thrust: control tools lead to $\beta_N H_{89p} \sim 7$ for $> 30\tau_E$
 - AT divertor pumping
 - β feedback controlled
 - Stationary discharge

- EC
 - Off axis ECCD in ELMing H–mode
 - ECH generated T_e barriers
 - NTM suppression with co–ECCD

- Progress in active RWM stabilization

- New QDB mode of operation

- Topical science area experiments
ADDITIONAL TOOLS FOR THE 2001 CAMPAIGN

- Increase to 6 gyrotrons
- Internal sensor loops to enhance RWM feedback control
- Edge J diagnostic Snider NP1.099