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Introduction and Motivation
* Gyrokinetic code GYRO to contains all physics of low frequency (<< ion cyclotron) plasma
turbulence assuming only that the ion gyroradius is less than magnetic field gradient length
* Nonlinear
° Electromagnetic and finite 3
° Real tokamak geometry
® Continuum (fluid-like) methods in 5-dimensional space (r, 8, n, €, A)
* Possible advantage over particle codes: implicit advance of electron parallel motion
® 3-modes of operation:
* flux-tube or high-n ballooning mode representation BMR An=5-10 p*-> 0
to be bench-marked with Dorland 's new gyrokinetic flux tude code GS2
° wedge or full radius An=5-10  p* small but finite
* full torus An=1 Global MHD modes
® Why full radius? Shear in the ExB velocity known to have a powerful stabilizing effect.
But shear in the diamagnetic velocity can be just as large and cannot be treated at p*= 0.
Also to quantify avalanches and action at a distance effects
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Some fundamentals about flux tube codes

° "Flux tube" codes follow a field line to make (Ar, rA8, RA) covers of a radial (r,0) annulus
and have cyclic radial boundary conditions

° Ar X rAO is typically 100ps X 100ps but ps is vanishingly small.

Since kyps = (ng/r)ps is finite (say .05 to 0.9), the toroidal mode numbers n are arbitrarily large.
» Although, 1/LT = -d In T/ dr is finite, the variation of T = Ar/LT or any other plasma variable
is insignificant, i.e. there are no profile (shear) variation effects.

...only magnetic shear s*=dInq(r)/dinr

» Because of there are no variation of coefficients and we have cyclic BC, most flux tube code
have a radial Fourier transform space: r m=rQ +xm grid is replaced with a kx = -i d/dr grid.
For finite s*, this is called the Ballooning Mode Representation

» Because we want to study general profile variation, not just ExB velocity shear,

but diamagnetic velocity shear at finite pg/r, in a finite Ar annulus with noncyclic radial BC,
we are developing a code GYRO with a radial grid.
__The 1D linear modes (for a given n,kx) became 2D modes (for a given n) : much more difficult

* Inour first stage (where we are now), the profile variation is turned off and we have
cyclic BC to benchmark with the Ballooning Mode code GS2 with a kyx grid
__This talk is a progress report on the first stage
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The next stage: non-cyclic BC finite radial annulus at finite ps

* The next stage will operate with non-cyclic BC (e.g. 0 gradient BC) over a finite annulus,
say r=0.4 to 0.6 with general profile variation. We don't want 0 BC which allows no in-out flow.

« Since in-flow will not equal out-flow, and the driving temperature gradients will begin to relax,
we need a scheme to add a running "incremental” sources to the n = 0 gyrokinetic equation:

+

d[F(r)+ fo(r,e)/dt +r_1d/dr[rz VExB_X_n(r,@fn(r, 9] = r"ld/dr[r<<z VExB_X n(r’ gfn(r, @>>

F(r) is the input fixed background Maxwellian, fo(r,e) is the n=0 (zonal flow) perturbation,
; \7EXB X_n(r,er) fn(r,e) in the nonlinear term is the x-directed flux, and

r~1d/ dr[r<<z \7ExB_X_n(r,9) fn(r,9)>> is the incremental source .

(()) is local time-local space maxwellized average [] defined scale separation

* We hope to approach "full radius" say r=0.3 to 0.7 then r=0.2t0 0.8
as resolution allows: 200-300 r-grid replacing the current 100 r-grid.
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Motivation

* To compare a simulation x's directly with experiment, in addition to the ITG drive, we

need trapped electrons, finite-beta (passing electrons), equilibrium scale ExB shear
stabilization . ... and finite ps profile shear effects,

* To treat the finite ps profile shear effects, we need a finite radial annulus without cyclic
BC, but still maintaining the input profiles.

® The plan for direct annulus comparison of experiments with a few simulations having

truly comprehensive physics ( including finite-3 and real geometry), is a different
strategy from previous work.

Namely, make many runs with limited physics (e.g. ITG only ) to normalize transport
models with more comprehensive physics, e.g. GLF23
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Gyrokinetic Equations

* Poisson's Equation: -2%,0°¢ ¥ [ z[—(zﬁ/f)?p+ @q] , () is non-adia. gyro-ave. DF
S

* Ampere's Law: ~P0°AF (Bo/2)3 J5 z4 @0,
S
where the phase space integral [[0 277> 2% d&&/?exp(-3(m2)[5 B d BI(1- B).

* Nonlinear Gyrokinetic Equation [2,3 ] :

G+ (b [LO)GsG zA/ T
—iwg (~(z0/ T)Uo+ @D+ i ap§ - in @i {008 -{ g, D+ cg,

where “hat” quantities are normalized, and U = ('b_VIIAII is the effective potential.

* The low-n MHD rule of neglecting A while forcing the curvature drift to equal the grad-B drift
is very good even for high-n.
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* The curvature drift operator which acts only on § is
(o = —iZT(2/ Ry)ao(By/ BYC(8 % A) [ina/F] +S(6, & A) [i(na/ ) + (| Or |/ 1g)D; 1} -

where C is the cosine-like normal curvature, S the sine-like geodesic curvature [1]
* The diamagnetic termis @ = —i(By/ Byt ) 2oling/ F1[1/ L, +1/ L+ (£-3/2)].
* The ExB equilibrium rotation frequency iscy= = —i(By/ Bunit)o}&bo,cgo[inq/f] :

* The nonlinearterm{X,Y} = ¥  (By/Bypit)oso[in" a/ f] X, [é} +i(n'q/ F)mng /1 or |]Yn,

n',n"=n-n’'
_parallel nonlinearity O(p*) not shown
* We define [ing/f]=inq/f +(B,/B) (Rq/f) (b16)d,. B,pit = Boodpo/ rar
The ng/r terms are fast and the J, terms are slow. where again we use Dr when Or acts on g.

* C is the pitch angle scattering operator.
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Field Line Following Coordinate System most efficient

(r,8,a) r=midplane minor radius flux surface label

0 = poloidal angle labeling Miller's local MHD equilibrium[1]
which generalizes infinite aspect ratio circular s-o model with
finite aspect ratio, Shafranov shift, ellipticity, and triangularity

a={ —IgddG field aligned angle in place of toroidal angle ¢

§=b0¢/BD 6, b= 0, b= 0, q=[5"6d6/2n
Fourier decomposition of perturbations: ¢=2,@(r, §exp(-in g requires
@, (r, = @(r,— Jexp(—in2 @) where phase factor exp(—in2rm) is 1 at singular surfaces

parallel derivative [~ (Eﬂ]] 8)d (1/Rq)dy

perpendicular derivatives on fast part: exp(-ina)

Déy: -imab R IKgq(8), where kg =nq/r with n,(6) =(rB/RBg)/q L 1

OhFE—im @ R ikgny ()0 (6) (@) 0 86 asin(6)
additional slow derivatives on @n(r,0) : DE’,y: (B / Bp)(EﬂD ) d;
radial derivative is a mixture of fast and slow: DESX: P rlo, oo 1

Ballooning Mode Representation(BMR) retains only the fast not slow O(p*) derivatives
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Normalizing Units, Parameters, and Gyro-Average

*  Te(0) and ne(0) for temperature and density
a = r of last closed flux surface for length
Cy = [To(0)/ M; 1Y 2 for velocity
alcy, fortime
le| ¢/ To(0) = ¢ and (cp/C)|e| Al Ty = A for potentials

* g=49(r,6,&A,0)n.(0)F, for non-adiabatic distribution function
eE=¢elT,A=ule,o= sgn(v”) and since (&, 1) are the constants of motion
d8=ng(0)F\,D;g where D,§=00§+3Ad) +(¢/L1)d:0 —[(€ -3/2)/L+]d
Note all terms beyond 4§ are small O(p*) dropped in BMR limit.

* Parameters: the central p';py = C/(€Bg/ M;C)], Debye length Ay, and electron beta [5.

* The gyro average L[4+ >, exp(—ina)kp}, expand the arguments of [ ] to first order p-/r,
so that g1}, = §day/2mexp(-inp L d @(r+ B r+6 odl .

As a first approximation the slow p (116 can be neglected.

R. E. Waltz APS 2000 020 GENERAL ATOMICS



Numerical Methods

* Electron parallel motion term is much faster than drift frequencies we are trying to follow,
hence need an implicit method which solves for the fields U simultaneously with the advance of g
® We use a split time step method: g1 =90 + dt * RHS1, g2=g1+RHS2,....
__€, A, Bparallel process

° Nonlinear step: 4-th order Runge-Kutta with sub stepping at constant U.

Conservative form with centered multi-point derivatives crucial for an 9n.m |2 conservation.
n; ’

_n, g, r-parallel process
* Pitch-angle collision step: n, €, r-parallel
_n, g, A-parallel process
° r-step: g-advance for geodesic curvature drift motion (d/dr part) with high order derivative.
° O-step: implicit g - advance of parallel, linear ExB, normal curvature drift motion
(kx =-i d/dr=0 part), with Poisson-Ampere field simultaneous U-solve

* Most difficult numerical problem has been to stability advance the neutrally stable

n=0, low-kx component over very long run times. Required the 6-step in special
conservative form griding and r-step & O-step repeated as a corrector on a predictor

* Used high-kx damper for electron runs. This avoids resolving singular surface electron layer
* "banding" or nearest neighbor in gyro-averaging and 5-pt radial derivatives to avoid Nr2 scaling.
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Ballooning Mode (kx-space) Analysis
finite beta  (v,«) =(0.167,-0.361)GYRO vs [0.175,-0.357]GKS
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Linear Growth Rates and Frequencies: GYRO vs GKS
ITG adiabatic-electron standard case
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a/LT=3, a/Ln=1, R/a=3, r/a=0.5, s=1,q=2, Te=Tj,
ne=5=(3,2), n\=26, ne=32/21, nr=96, Lx=80 ps, nn=15
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Linear Growth Rates and Frequencies: GYRO vs GKS

electrostatic nonadiabatic electron standard case
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n=0 radial mode (Zonal Flow) decay to Rosenbluth-Hinton residual
geodesic acoustic mode (GAM)
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R/r=6, r/a=0.5, =2, Te=Tj, (s=1), kxps =0.078 (lowest mode) RH residual = 6%
ne=>5 =(3,2), n\=26, ne=16/1T, nr=96, Lx=80 ps
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Scaling of n=0 radial mode residuals at kx->0 and vs. kx

RH residual (%)

ne=5=(3,2), N\=26, NE=32/2T
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Nonlinear Simulation
ITG adiabatic electron standard case
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a/LT=3, a/Ln=1, R/a=3, r/a=0.5, s=1, q=2, Te=Tj,
ne=5=(3,2), n\=14, ne=16/211, dt=0.05a/cs: 60 hrs on 45ps GA Stella LINUX cluster 16000step:
nr=96, Lx=380 ps, nn=14: kyps =0.0, 0.06,0.12,0.18....0.78, kxps_min = 0.078, kxps_max=3.6
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How to measure avalanche fraction
Hypothesis: Xrms_variation/Xrms_average

® Avalanches are intermittent events
 Spikes in X are correlated in time with Flux(r,t) streamers interpreted as avalanches
* Example from standard case ers_variation/Xrms_average = 0.48/3.25 = 14.7%
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Nonlinear Simulation Spectrum

ITG adiabatic electron standard case.....continued
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Nonlinear Simulation Visualization
ITG adiabatic electron standard case.....continued

* Annulus contour plot of physical [ﬁe/neo](r,H):¢(r,@—<d>(r,@>9_ave at =0

reconstructed from ¢n(r,0) :

)

®(r.6)= ZeXp[_l na(r)o; ne_scale] B ecourse_scale
a=(-q(nN0; n=x0,5,10,15,...70; 80 ps fromr=0.4100.6; ps=2.5€-3

The simulation is done on a course scale 8-grid for ®, but reconstruction requires a fine scale grid
for the eikonal. Otherwsie the eddies could not be seen. This illustrates the efficiency of the field
line following (a,8,r)-grid in place of the toroidal (¢,07)-grid.

If we multiply nx 10 and psx 1/10, r->0.49 to 0.51 and eddies will scale down in size by 1/10,
but X normed to gyroBohm will be unchanged.

® Annulus contour plot of physical ®(r,8) shows dominance of zonal flows over ballooning modes.
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Preliminary nonadiabatic electron simulation Xgi=8.3, Xee=2.3, D=-1.47 (cs/a)ps2
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GYRO : right or wrong ? code checks and comparisons in progress
* Linear stability of ballooning modes checked with GKS and spot checked with GS2
* Quasilinear flux/|¢p|ms? with GS2 std case (excepta/ln=1.5) kyps=0.3

GYRO /GS2 ions electrons
energy 0.39 / 0.39 0.14 / 0.15
plasma 0.012 / 0.015 0.012 / 0.015

* Nonlinear ky-pump mode test : Y nL(kx) = kyps - kxps - (e(Aky)/Te) / (ps/a) cs/la * 7%
® Nonlinear ITG same grid resolution stdcase GYRO /GS2

_ 2mode kyps=(0,0.3): Xx =13 [/ 1.5 (-14%)
_14 mode kyps = (0, 0.06,0.120...0.78): X =[2.68,3.25]3.40 [/ 4.2 (-19%)
dt =[0.1,0.05]0.025 0.01

* For some collisionless cases, running beyond =500 a/cs(1500 LT/cs), and particulary at
low q (1.4) we find the longest wave length zonal flow (n=0, lowest kx) builds up to a large
stationary value, causing the diffusion to collapse to nearly 0. Other codes do not see this.

The CYCLONE case at R/LT=9 is a good example. r/a=0.5, a/LT=3L] 3.29, a/Ln=1L1 0.8,
R/a=30L] 2.77, s=1.0L1 0.78, q=2 L1 1.4 (This is far beyond Dimit's shift region R/LT=4t06)

With small level of ii-collisions GYRO has x =2.72 ( dt=0.025) compared to Dimit's 4.0 (-32% po
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Progress and Conclusions
* We have how obtained good linear EM agreement with Kotschenreuther's GKS code

* We have found efficient MPI parallelization methods with better than linear scaling to 512ps.
* The use of banding and real space nonlinear 2 and 3-pt derivative allows Nr scaling.

* n=0 modes have excellent linear agreement with Rosenbluth-Hinton residules.

* Stable implicit linear methods well in hand

* Have EM real geometry linear runs on the 16ps GA LINUX Beowulf LUNA and moderate

phase space resolution nonlinear runs ES adiabatic-e ITG and nonadiabatic-e runs on
45ps GA Stella LINUX cluster, and NERSC 512ps GSeaborg IBM-SP

* Immediate goals:
__Finish flux tube run benchmark with Dorland-Kotschenreuther GS2 code.

__Move to radial annulus operation with non-cyclic radial boundary conditions and profiles
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