PROGRESS IN MFE SCIENCE – TOKAMAK RESEARCH

by R.D. Stambaugh

Presented at American Physical Society Division of Plasma Physics Meeting Quebec City, Quebec, Canada

October 24, 2000

MFE-Tokamak

219-00/RDS/ci

RESEARCH RESULTS FROM

Alcator C-mod	JET	TCV
ASDEX Upgrade	JFT–2M	TdeV
Compass–D	JT 60U	TEXTOR
DIII–D	MAST	TEXT
ET	NSTX	TFTR
FTU	PBX–M	TORE-SUPRA
HBT-EP	PLT	TRIAM–1M
HIT	START	T–10

SPECIAL THANKS FOR DIRECT CONTRIBUTIONS

S. Allen	A. Hubbard	J. Lister	F. Romanelli	D. Whyte
S. Bernabei	I. Hutchinson	T. Luce	S. Seitz	S. Wolfe
L. Berry	F. Jaeger	D. Meade	M. Shimada	
P. Bonoli	G. Janeschitz	J. Menard	G. Staebler	
K. Burrell	M. Kaufmann	G. Navratil	E. Strait	
M. Chu	S. Kaye	W. Nevins	A. Sykes	
E. Doyle	J. Kinsey	H. Ninomiya	E. Synakowski	
E. Frederickson	A. Kitsunezaki	W. Park	T. Taylor	
A. Garofalo	R. La Haye	R. Perkins	A. Turnbull	
C. Greenfield	L. Lao	R. Pinsker	R. Waltz	
M. Greenwald	G.S Lee	P. Politzer	M. Watkins	
R. Hawryluk	F. Leuterer	M. Porkolab	R. Weynants	
J. Hosea	B. Lipschultz	R. Prater		MEE Takamak

219-00/rs

MAIN POINTS

• We have learned a tremendous amount about magnetically confined plasmas

- Measurements and theory
- Calculations

• Exciting new directions are opening

Advanced Tokamak research

• We are technically ready for next steps

OUTLINE

- The tokamak equilibrium
- Heating and current drive
- Stability
- Confinement
- Power and particle control
- Burning plasma physics
- Next steps
- Conclusions

WHAT IS A TOKAMAK?

- An axisymmetric toroidal confinement configuration with a strong toroidal plasma current and an applied toroidal magnetic field strong enough to make the edge winding factor > 2
- Not part of the basic definition but certainly part of the opportunity for variation and innovation within the concept are:
 - Shape (elongation, triangularity)
 - Aspect ratio
 - Divertor or limiter boundary
 - Toroidal field strength
 - Current profile
 - Pressure profile
 - Rotation profile
 - Radial electric field profile
 - Wall stabilization

Advanced Tokamak

MFE-Tokamak

219-00/jy

TOKAMAKS HAVE MADE EXCELLENT PROGRESS IN FUSION POWER

PLASMA EQUILIBRIUM THEORY IS WELL UNDERSTOOD AND EXTENSIVELY USED

• Ampere's Law and the force balance equation $\overrightarrow{\nabla} \times \overrightarrow{B} = \mu_0 \overrightarrow{J}$ and $\overrightarrow{\nabla} P = \overrightarrow{J} \times \overrightarrow{B}$ lead to the Grad-Shafranov equation for the poloidal flux function.

Equilibrium codes solve this equation for the closed flux contours that give the tokamak its good confinement.

- Such codes are used extensively in
 - Experiment design, control of complex shapes is precise
 - On-line data analysis *W* (t), β (t), τ_{E} (t)
 - Providing the geometry for transport analysis

PLASMA EQUILIBRIUM SHAPE CONTROL IS A HIGHLY DEVELOPED SCIENCE

DIII–D

1

ASDEX UPGRADE

MFE—Tokamak

219-00/rs

SUCCESSFUL METHODS OF HEATING AND CURRENT DRIVE FOR STEADY-STATE HAVE BEEN DEVELOPED

THE PLASMA'S SELF-GENERATED BOOTSTRAP CURRENT IS THE BASIS FOR MODERN APPROACHES TO STEADY-STATE OPERATION

- An element of neoclassical transport theory
- J_{bs} ∝local pressure gradient

MFE—Tokamak

A HIGH PERFORMANCE PLASMA WITH FULL NON-INDUCTIVE CURRENT DRIVE AND 80% BOOTSTRAP FRACTION IN JT-60U

- H₈₉~3.5, HH_{98y2}~2.2, β_N ~2, β_p ~2.9, f_{BS}~80% for 6 τ_E with full non-inductive CD
- Current profile was largely determined by the bootstrap current, and was nearly stationary

NEUTRAL BEAM HEATING AND CURRENT DRIVE

MFE—Tokamak

NEUTRAL BEAM CURRENT DRIVE IN ACCORD WITH THEORY

219-00/rs

ELECTRON CYCLOTRON HEATING AND CURRENT DRIVE ($\omega = n\omega_{ce}$)

 Waves propagate in vacuum, so antenna can be far from the plasma

DIII–D

 Damping of EC waves causes diffusion in V_⊥ direction. Collisional relaxation on ions generates current through generation of an asymmetric V_{||} distribution

 Inside the plasma the waves propagate up to a critical density (related to the plasma frequency) and are absorbed near the cyclotron resonance or its harmonics

• Calculational tools include ray tracing codes (TORAY, GENRAY, BANDIT-3D) and Fokker-Planck codes (CQL3D, BANDIT-3D, Giruzzi, RELAX, Krivenski, Fukuyama)

MICROWAVE ELECTRON CYCLOTRON HEATING PROVIDES LOCALIZED CURRENT DRIVE

Fully non-inductive discharges

210 kA sustained in steady state by 2.7 MW co-ECCD

MFE—Tokamak

LOWER HYBRID HEATING AND CURRENT DRIVE ($\omega_{ci} < \omega < \omega_{ce}$)

Lower Hybrid coupling requires n_{||} >1 (Brambilla, SWAN)

Phased array or waveguides

νī

Ray tracing: the accessible waves cross the plasma and can undergo several reflections at the edge before being absorbed.

Codes by: Cardinali, Bonoli, Ignat, Valeo, Harvey, Takase (Figures from Giruzzi)

Damping of LH waves forms a parallel energetic electron tail in the distribution function via Electron Landau Damping. This asymmetry constitutes the non-inductive current (Fisch, Karney)

LHCD SUCCESSFUL IN MANY APPLICATIONS

 Plasma current initiated and ramped up by LHCD

- Plasma current maintained in steady state:
 - JET; 3 MA, 4 s
 - TRIAM-1M; 20 kA, 2 hr

Euratom CEC

- 2-minute-long discharge at Ip = 0.8 MA
- Injected energy = 290 MJ

MFE—Tokamak

ICRF HEATING AND CURRENT DRIVE ($\omega = n\omega_{ci}$) INVOLVES WAVE EXCITATION, PROPOGATION, ABSORPTION AND MODE CONVERSION

BASIC ICRF SCHEMES (MINORITY D AND ³He, 2ω_{CT}) FOR A DT REACTOR HAVE BEEN VERIFIED

 Mode conversion experiments in D – ³He produced the highest electron heating efficiency in TFTR

• JET: 6 MW ICRF \rightarrow 1.66 MW fusion power

MFE—Tokamak

HEATING AND CURRENT DRIVE CHALLENGES FOR THE NEXT DECADE

MHD STABILITY PHYSICS MATURED IN THE 80's AND MOVED TO PROFILE OPTIMIZATION IN THE 90's

Advanced Tokamak

THE EFFECTS OF PLASMA INSTABILITIES RANGE FROM LOSS OF THE CONFIGURATION TO LOCAL TRANSPORT

Spatial Scale of the Mode	Mode Description	Principal Consequence
~a	Global kink modes Ideal MHD (low n)	Disruptions β and I _p limits
~ <mark>1</mark> 5a	Tearing modes Resistive MHD Ideal Ballooning (n $\rightarrow \infty$)	Macroscopic Transport Profile Modification
~ <mark>1</mark> 10	Edge Localized Modes	Periodic bursts at the edge
ρ	Ion Temperature Gradient Modes Drift Waves	Ion Transport
ρ _e	Electron Temperature Gradient Modes Drift Waves	Electron Transport

IDEAL MHD INSTABILITIES LIMIT THE MAXIMUM BETA

BETA LIMIT SCALINGS WERE DERIVED THAT FIT WELL EXPERIMENTAL RESULTS

WALL STABILIZATION, PLASMA SHAPING, AND OPTIMAL PRESSURE AND CURRENT PROFILE MAY DOUBLE THE STABLE OPERATING SPACE OF THE TOKAMAK

IDEAL KINK MODE GROWTH IS SLOWED BY A RESISTIVE WALL AND RESPONDS TO FEEDBACK STABILIZATION

LOW ASPECT RATIO RAISES β_{N} and β_{T}

219-00/RDS/wj

TEARING MODES

Classical

- Finite resistivity
- Current can diffuse and form clumps — magnetic islands on rational q flux surfaces
- Driven by ∇J
- Growth time 10s of milliseconds

Neoclassical

- \(\nabla P=0\) in island removes equilibrium bootstrap current
 - Helical current perturbation amplifies seed island
- Providing auxiliary current drive predicted to stabilize NTM

STABILIZATION OF NTMs BY ECCD

219-00/RDS/wj

Similar results from JT–60U

MFE—Tokamak

PRECISE CONTROL NEAR THE $\beta\text{--LIMIT}$ is the key to avoiding disruptions

- 1. Need to operate close to stability limits
 - Good control
 - Knowledge of limits

High performance DIII–D discharge regulated 5% below 2/1 tearing limit for 35 τ_E (6.3 seconds)

- 2. Mitigation of disruption consequences massive gas puff or pellets
 - No runaway electrons
 - Reduced halo currents and forces on structional components
 - Reduced heat pulses to the divertor surfaces

BOTH ALCATOR C-MOD AND DIII-D HAVE FOUND ELM-FREE REGIMES WITHOUT DENSITY OR IMPURITY ACCUMULATION

THE FUTURE

 Advanced Tokamak stability theory points to states with very broad pressure profiles and hollow current profiles and nearly 100% bootstrap current as perhaps the ultimate potential of the Tokamak

(J. Menard, S. Jardin, J. Manickam)

MFE—Tokamak

STABILITY CHALLENGES FOR THE NEXT DECADE

90's

2000-2010

β_T = 13% Current profile measured Theory optimization of profiles Profile variation and control in experiments Wall stabilization Halo currents Neoclassical tearing Second stable edge Advanced Tokamak Wall stabilized β -limitBootstrap fraction \rightarrow 100%Pressure and current profile controlVery hollow J(r)Broad pressure profilesOptimum edge stabilityFeedback stabilization or avoidance
of neoclassical tearingDisruption mitigation3-D MHD, understand disruptions
away from β -limit

THE 90'S HAVE SEEN EXCITING ADVANCES IN CONFINEMENT SCIENCE

TOKAMAK CONFINEMENT PROVED (EMPIRICALLY) PREDICTABLE

STRATEGY TO CALCULATE TRANSPORT

- Theory-based 3D nonlinear simulations being used to benchmark theoretical transport models which are then compared to experiment
- Linear gyrokinetic codes describe local ballooning mode instabilities
 - Long wavelength ion temperature gradient (ITG) and trapped electron driven
 - Short wavelength electron temperature gradient (ETG) driven
- Nonlinear flux tube and approximate gyrofluid codes
 - $\rho_i/a \rightarrow 0$
 - Only local ballooning
- Nonlinear codes spanning several hundred gyroradii
 - Finite ρ_i/a
 - More time consuming
- ITG/trapped electron flux tube simulations have been used to benchmark gyrofluid local transport code models with comprehensive physics
- International profile data base after 1995 allows systematic and comparative statistical tests of transport code models

Reasonable Agreement With Experiment

RECENT EXCITEMENT TRANSPORT BARRIERS FORMED BY SHEARED E×B FLOW

SHEARED E×B FLOW SUPPRESSION OF TURBULENCE UNDERLIES BOTH EDGE AND CORE TRANSPORT BARRIERS

EQUILIBRIUM SCALE SHEARED E×B FLOWS CAN QUENCH ITG TRANSPORT IF THE SHEARING RATE EXCEEDS THE MAXIMUM LINEAR GROWTH RATE OF THE TURBULENCE

- ITG simulation of local annulus 160 ρ_s wide [R.E. Waltz, et al., Phys. Plasmas <u>1</u>, 2229 (1994)]
- Application of E×B shear $\omega_{E\times B} \sim \gamma_{max}$ breaks up eddies and considerably reduces transport

No $E \times B$ flow

MFE—Tokamak

PLASMA TURBULENCE SIMULATION CODES USE FULL TOROIDAL GEOMETRY TO CALCULATE TRANSPORT RATES

• Recent advance: Small scale sheared poloidal flows can shear apart radial eddies, reducing their radial step size and the transport by an order of magnitude

MFE—Tokamak

219-00/jy

ION-NEOCLASSICAL TRANSPORT WITHOUT TURBULENCE, ACROSS ENTIRE PLASMA RADIUS

219–00/RDS/wj

MFE—Tokamak

CONFINEMENT CHALLENGES FOR THE NEXT DECADE

Wind tunnel scaling 3–D non-linear turbulence simulations Comprehensive theory based models Turbulence measured Concensus on ion transport Internal transport barriers Neoclassical ion transport attained E×B shear stabilization

90s

Theory based calculations of transport barrier formation Control ITB radius and gradient Understand electron transport electron turbulence diagnostics First-principles diffusion coefficients Momentum and particle transport Nonlinear turbulence simulations with both electrons an ions Complete dimensionless scaling Access conditions for H-mode Edge pedestal structure

2000 - 2010

THE SCIENCE OF POWER AND PARTICLE EXHAUST LEAPED FORWARD IN THE 90's

THE JET DIVERTOR IS TYPICAL OF TOKAMAKS TODAY

Axisymmetric lower single null with graphite tiles to handle high heat flux

THE PHYSICS ELEMENTS THAT ARE DOMINANT IN THE DIVERTOR PROBLEM ARE **NOW INCORPORATED IN 2-D CODES**

Actual flux surface geometry Non-equilibrium radiation rates

- **Detailed divertor structures**
- Ablation during intense heat pulses

AN EXAMPLE OF EXCELLENT AGREEMENT BETWEEN B2-E IRENE CALCULATED AND MEASURED RADIATION DISTRIBUTIONS

MFE—Tokamak

RECOMBINING DIVERTOR PLASMAS DISCOVERED

DIVERTOR DETACHMENT IN ALCATOR C-MOD

DIVERTOR DETACHMENT IN ALCATOR C-MOD

EXHAUST OF FUEL AND HELIUM ASH DEMONSTRATED

• Plasma density regulated constant by gas fueling and divertor pumping

DIII–D Divertor 2000

 Divertor pumping prevents accumulation of helium ash (injected by neutral beams)

• Pumpout rate of helium adequate for fusion reactor

CODES TO CALCULATE THE EROSION OF DIVERTOR SURFACES ARE BEING TESTED AGAINST EXPERIMENTAL DATA

- Erosion during normal operation
 - REDEP matches DIII–D data for carbon
 - Treats physical and chemical sputtering and 2-D material transport
 - Codes: REDEP, WBC, ERO, DIVIMP, MCI, IMPMC
- Erosion during ablative heat pulses

219-00/rs

- 2-D codes treat vaporization melting vapor shield formation, radiation transport
- Tested against plasma gas experiments
- Codes: WURZ, LANGYEL, HASSANEIN

Disruption Erosion in the Divertor

POWER AND PARTICLE EXHAUST CHALLENGES FOR THE NEXT DECADE

SCIENTIFIC BASIS — DEEP, EXTENSIVE, FULL OF PROMISE

Area	Status	Advanced Tokamak Challenge	Promise
Heating	Understood, technology developed	Pressure profile control, alpha heating	Burning plasmas
Current drive	Physics understood	High bootstrap fraction, local profile control	Steady-state bootstrap fraction \rightarrow 100%
Stability	Operating space understood, predictable	Wall stabilization	Double the stable operating space
Confinement	Closing in on ability to calculate	Transport barrier control	Near neoclassical ion confinement
Power and particle control	Major physics elements calculable	Low density divertors compatible with current drive	Steady-state with low surface erosion

WE ARE READY TO TAKE UP BURNING PLASMA AND STEADY-STATE ISSUES

ALPHA HEATING OBSERVED

CLASSICAL ALPHA CONFINEMENT VERIFIED (TFTR)

First orbit loss (3% at 2.5 MA)

Radial transport

219-00/rs

MFE—Tokamak

He⁺⁺ Alpha Particles

THEORETICALLY PREDICTED ALFVÉN EIGENMODES WERE OBSERVED

• AE Modes absent in highest fusion power cases

MFE—Tokamak

OBSERVED α -DRIVEN TAES CONSISTENT WITH FULL LINEAR THEORY

- Calculations with NOVA-K code
- Weak shear and high q(0) are destabilizing
- Weak or reverse shear plasmas in a reactor may be unstable to high-n TAEs

COPIOUS FUSION POWER HAS BEEN PRODUCED

JET D-T Campaign

- $P_{FUSION}/P_{HEAT} = 0.6$
- 0.68 GJ fusion energy

MFE—Tokamak

13.5

 $D_{\alpha} + T_{\alpha}$

Time (s)

16 MW

28 keV

14 keV

0.9

14.0

THE ITER-FEAT MACHINE

 Cut through cryostat, TF and PF coils, Vacuum Vessel, Blanket and Divertor

Fusion Ignition Research Experiment (FIRE)

http://fire.pppl.gov

Design Goals

- R = 2.0 m, a = 0.525 m
- B = 10 T, (12T) *
- W_{mag} = 3.8 GJ, (5.5T) *
- I_p = 6.5 MA, (7.7 MA) *
- P_{alpha} > P_{aux} , P_{fusion} < 200 MW
- Burn Time \approx 18.5 s (\approx 12 s) *
- Tokamak Cost \leq \$ 0.3B Base Project Cost \leq \$ 1B
- * Higher Field Mode

Attain, explore, understand and optimize fusion- dominated plasmas that will provide knowledge for attractive MFE systems

A Proposal of JT-60 Modification

¥ To conduct researches on steady state operation of tokamaks
¥ To contribute to the ITER operation
¥ Under discussions at the Fusion Council

JAERI ——

EXTENDING THE ADVANCED TOKAMAK: KSTAR

- 20–300 s pulse length (S/C technology)
- B = 3.5 T, I = 2 MA
- R = 1.8 m, a = 0.5 m
- Double-null divertor, $\kappa = 2, \delta = 0.8$
- 16-27 MW profile control: (neutral beam, ion cyclotron, lower hybrid)

HT-7U ADVANCED TOKAMAK – HAFEI CHINA INSTITUTE OF PLASMA PHYSICS ACADEMIA SINICA

HT–7U

Construction: Approved Conpletion: mid 2003

> R/a = 1.7/0.4 m B = 3.5 T I = 1 MA κ = 1.6–2.0 δ = 0.4–0.8

ASIPP

HT-7

THE ADVANCED TOKAMAK LEADS TO AN ATTRACTIVE FUSION POWER PLANT

• The U.S. ARIES — RS system study

• The Japanese SSTR system study

Attractive features

- Competitive cost-of-electricity
- Steady-state operation
- Maintainability
- Low-level waste
- Public and worker safety

	Conventional	AT
Size, major radius (m)	8	5
COE ¢/kWhr	~13	~7
Power cycle	Pulsed	Steady state

MFE-Tokamaks

SUMMARY

- Research in the tokamak has greatly advanced fusion energy science
- Tokamak research has shown fusion energy is feasible in the laboratory
- The tokamak is scientifically and technically ready to proceed to burning plasma and/or steady-state next steps
- Advanced Tokamak research seeks to find the ultimate potential of the tokamak as a magnetic confinement configuration
 - Anticipated results point to practical and attractive fusion energy