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Motivation: Edge Stability

2 Pressure Pedestal: The pressure at the top of the H-mode

edge region, or \pedestal height", plays a key role in deter-

mining overall con�nement in most theory-based transport

models. A wide range of evidence suggests edge stability

may determine the pedestal height and/or width.

2 ELMs: Edge localized modes directly limit performance of

high con�nement discharges, and can couple to other modes

leading to termination of some discharges. Giant ELMs may

also cause heat load problems in large reactors.

! Want \optimized edge" with high pedestal and small ELMs

for high performance with density and impurity control



Background

2 ELM stability studies and observed ELM precursors suggest important

role for intermediate toroidal mode number instablities (3 <� n <� 30)

3 An increasingly wide range of modes (n <
� 10) can be studied with

low-n MHD codes [Ferron NP1.088, Chu]

3 Very high n's expected to be FLR stabilized

3 Conventional ballooning theory not strictly valid in the H-mode edge,

edge bootstrap current can drive \peeling" modes, even at high n

3 Edge ballooning theory [Connor, Hastie, Wilson, Miller, Phys. Plas. 5 2687

(1998)] developed to study coupled peeling and ballooning modes

Edge ballooning/peeling code (ELITE) + low-nMHD codes allows

study of ideal stability over essentially the full spectrum of n

Caveats:

2 ELITE includes only the dominant �nite-n terms [O(n�2=3)]

2 both ELITE and most low-n codes do not cross the separatrix



The ELITE code

The ELITE (Edge Localized Instabilities in Tokamak Experiments) code was

developed to solve Connor et al's Edge Ballooning equations in the edge

region, to evaluate the stability of coupled peeling and ballooning modes

2 expansion keeps dominant O(n�2=3) correction to the n =1 eigenvalue,

but still requires moderately large n >� 10 for accuracy

2 �xed edge surrounded by vacuum

Original local version by [Wilson, Miller et al, Phys. Plas. 6 1925 (1999)]

2 free variation of s and � provides physical insight

New ELITE code uses nonlocal, multiple ux surface equilibria (EFIT and TOQ)

2 can treat radially extended modes and strongly shaped cross-sections

2 typical domain is outer � 45 rational surfaces (� 5� 40% of ux)

2 realistic, though full equilibrium reconstruction required for each change

in parameters

Code fully rewritten in F90, running on workstation. Work in progress on

�nite inertia and including addition terms in 1=n expansion.



Physical Insight Provided by Analysis in s� �

Geometry

2 The s � � code uses a shifted circle geometry with the addition of a

magnetic well parameter dm = Dms2=� to model the e�ects of �nite

aspect ratio and shaping. [Here s is magnetic shear, � is the normalized pressure

gradient, and Dm is Mercier's parameter.]

2 Nearest vacuum rational surface, which plays a key role in peeling mode

stability, is placed at a �xed distance from the plasma edge. Here � =

n(q0vac � qa) = 0:1

2 � = �8�Rq2
B2

dp
dr

is speci�ed at the edge, and decreases inward. Here � =

�a � �d(qa � q) with �d = 4.



Peeling and Ballooning Mode Coupling

6

5

4

3

2

0

6

5

4

3

2

1

0 1 2 3 4 5 6

Peeling Unstable
Unstable

Stable

Stable

dM=–0.645

dM=–0.64
dM=–0.6

2–D, coupled
mode

7

S

S

S

α
1 2 3 4 5 6 7

α

pure peeling

pure ballooning U

2nd2nd
s� � stability boundaries, n = 20, q0 = 4, �= 0:1

2 The pure ballooning and peeling modes are coupled at �nite

n, and can restrict access to second stability

2 Increasing magnetic well (larger negative dm) opens up a

window to second stability [Wilson, Miller, Phys. Plas. 6 873 (1999)]



Dependence on Mode Number (n)

2 Second stability access is easiest at high-n, while the pressure gradient

limit is higher at low n.
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2 Suggests that discharges with \good" shaping (large negative dm) can

reach a higher edge p0 value via access to second stability. However, the

�rst mode to go unstable will have a low n and may therefore cause a

large ELM.

2 In contrast, discharges with poor shaping (smaller magnetic well) will go

unstable at lower p0, but the �rst unstable mode will have large n and

may lead to smaller \grassy" ELMs. [Ferron et al Phys. Plasmas 7 (2000) 1976]



Discussion of s� � results

2 Strong dependence on magnetic well suggests careful treat-

ment of edge equilibrium geometry crucial for quantitative

analysis

2 Results support presence/absence of second stability access

as explanation for change in ELM behavior with discharge

shape [Ferron et al Phys. Plasmas 7 (2000) 1976, and this meeting]

2 Broad mode structure of ballooning modes suggests a local

equilibrium expansion about the outer ux surface is inade-

quate in some cases. Prompted code enhancement to treat

nonlocal equilibria.



Case Study: ELM behavior vs. squareness in DIII-D
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Edge D� emission, indicating ELM frequency, and edge electron temperature Te, indicating

ELM amplitude, in shots with varying squareness (Æ2), (a) Æ2 = 0:05 (b) Æ2 = 0:2 (c) Æ2 = 0:5.

2 Moderate squareness (0:05 <� Æ2 <� 0:2) shots reach high p0 with large, in-

frequent ELMs [Cross section characterized by triangularity (Æ) and squareness (Æ2),

where R(�) = R0 + a cos(�+ sin�1 Æ sin �), Z(�) = �a sin(�+ Æ2 sin 2�). Here squareness

is varied while other quantities are approximately �xed.]

2 High squareness (Æ2 � 0:5) shots have small, high frequency ELMs, and

low edge p0



In�nite-n Ballooning Analysis
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Measured edge pressure gradient, and in�nite-n conventional ballooning stability boundaries

(a) during high frequency ELMs in a high squareness (Æ2 = 0:5) discharge and (b) during low

frequency ELMs in a moderate squareness case (Æ2 = 0:2)

2 In�nite-n analysis suggests that moderate squareness shots have second

stability access in the edge while high squareness shots do not

2 Result must be carefully checked with �nite-n analysis, including coupled

peeling and ballooning modes



Low to Intermediate n Stability Analysis

MHD stability analysis using model equilibria with hyperbolic tangent pressure

pro�les and bootstrap current �nds:

2 High-squareness shots are stable to low n <
� 10 modes for the observed

p0 values, but unstable to higher n >� 20 peeling/ballooning modes

2 Moderate squareness shots are (second) stable at high n, but approach

the threshold for low 5 <� n <� 10 instability. Critical p0 decreases with n.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.0

0.5

X
GATO n=10
radial mode structure
DIII-D moderate squareness
Large ELM

ψN

(b)

Radial mode structure of the (a) n=20 instability in the high squareness case (b) n=10

instability in the moderate squareness case



0 O(40)

Schematic of Ideal MHD Edge Instability Thresholds

∞
Toroidal Mode Number, n

STABLE

2nd Regime
Access

FLR
Stabilization

Operating Point Shifts
with Discharge Shape

P ed
ge

 T
hr

es
ho

ld
 (a

.u
.)

′

UNSTABLE

Decreasing
Squareness



ELM model developed from MHD stability

calculations on DIII-D

MHD Stability analysis on DIII-D using several codes (GATO,

ELITE, BAL-MSC, DCON) leads to a model of edge stability

and ELMs

2 First mode to go unstable is approximately the lowest n without second

stability access

2 Size of ELM correlated to radial mode width of �rst unstable n

3 In DIII-D, low-n modes tend to be broader

3 get large ELMs for \good" shapes (eg moderate squareness) which

allow second stability access to high n modes

3 small ELMs when there is little or no second access (eg high square-

ness)

[Ferron et al Phys. Plasmas 7 (2000) 1976, and this meeting]



JT-60U ELM Behavior Seems Di�erent
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Change in ELM character with q95, triangularity, and �p on JT-60U

[Y. Kamada et al PPCF 42 A247 (2000)]

2 Giant ELMs observed in regions where ballooning instability is expected. Small

(\grassy") ELMs seen where second stability access is expected.

2 Choose a giant ELM shot (32358) and a grassy ELM shot (32511) for closer

analysis



JT-60U Edge Ballooning Analysis
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[L. Lao et al IAEA-CN-77/EXP3/06 (2000)]

2 JT-60U sees large ELMs when shots have no second stability access

2 small ELMs with second access (though p0 hardly exceeds nominal �rst bal-

looning limit)



Intermediate n analysis shows JT-60U Edge also

Consistent with Model

Radial mode structure of marginally stable modes for JT-60U cases with (a)

giant ELMs, q95 � 3:4 (b) small \grassy" ELMs, q95 � 6:0

2 Radial width of most unstable mode corresponds to ELM size, as in DIII-D

2 Grassy ELM case has 2nd stability at in�nite n, but not for intermediate n

modes, leading to a pressure gradient near the nominal ballooning limit



Speculative Implications for Pedestal Scaling

Much unknown about dynamics of p0, Jbootstrap, E�B

Speculations on scaling of edge barrier gradient (p0) and width (�)

2 Commonly assumed that p0 set by ideal ballooning limit

3 Good �t in shots without \deep" second stability access (where in-

termediate n >� 15 are second stable)

3 Many DIII-D shots have \deep" access, and exceed nominal balloon-

ing limit by factors of 2-5 [Osborne, Ferron, Groebner]

� What limits p0 with \deep" access? Transport? Low-n stability?

3 \Deep" access not seen so far on JT-60U, p0 close to ballooning limit

3 May need to divide database into shots with and without access to

get consistent scaling

2 Pedestal width often assumed to be related to E�B > micro !� � ��

3 Possible that �nite-n, �nite width MHD rather than tranport physics

sets width, particularly with 2nd stability (� � �0:4p on DIII-D)

3 Perhaps width is set by minimum of a) region where E � B strong

enough to stabilize microturbulence b) maximum �nite-n MHD stable

width given above p0 - but dynamics are a real issue here

On DIII-D, high pedestals usually have giant ELMs which need to be avoided

in a reactor (QDB on DIII-D, EDA on C-Mod, Grassy ELMs on JT-60U etc)



Nonlinear Simulations with BOUT

2 Ultimately need nonlinear simulations including non-ideal e�ects and X-

point geometry to study ELM dynamics and test models

2 BOUT code [X. Q. Xu et al Nucl. Fusion 40 731] evolves the nonlinear Braginskii

equations on both sides of the separatrix - parallel current terms are being

added
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Contour plot of the electrostatic potential (�) vs. the normalized radial (x) and poloidal

coordinates, in the linear phase of a BOUT simulation with parallel current. Equilibrium is ideal

ballooning unstable. Peaks in � near the top and bottom of the machine highlight the impact

of X-point geometry on ballooning-type modes.



Summary and Future Work

ELITE code, together with low-n MHD codes, can study the ideal edge stability

of nonlocal tokamak equilibria over essentially the entire toroidal spectrum

The behavior of intermediate to high-n instabilities is signi�cantly altered by

Jbootstrap, peeling/ballooning coupling and �nite-n e�ects

A case study of di�erent shaped equilibria in DIII-D �nds that changes in

cross section shape can open or close access to the second stability regime

for ballooning-like modes.

2 Suggests an explanation for the di�erent p0 and ELM types seen in dif-

ferent shaped discharges

ELM model based on ideal MHD stability of detailed equilibria, including

edge current and second stability access, appears consistent with DIII-D and

JT-60U results

2 ELM size correlates with radial width of most unstable mode

X-point geometry and non-ideal e�ects need to be considered. Nonlinear

simulations using the BOUT code with parallel current terms are being under-

taken to assess the importance of these e�ects and to further elaborate ELM

dynamics.


