Improved Resistive Wall Mode Stability in DIII-D with Optimal Error Field Correction

T.J. SCOVILLE, E.J. STRAIT, R.J. LA HAYE, General Atomics, A.M. GAROFALO, G.A. NAVRATIL, Columbia University, L.C. JOHNSON, M. OKABAYASHI, Princeton Plasma Physics Laboratory — In the development of an advanced tokamak plasma, beta may be limited by the Resistive Wall Mode (RWM). Sufficient plasma rotation can stabilize the RWM, but rotation can be reduced by the torque from uncompensated error fields. In DIII-D plasmas with beta above the “no wall” limit, the rotation steadily drops and leads to an $n = 1$ RWM when the rotation decreases below a critical value. This is consistent with enhanced drag caused by a resonant response to an uncompensated $n = 1$ error field once beta exceeds the no wall limit. A simple torque balance model that includes this effect will be compared with data. The experimental results show that careful error field correction leads to a much longer period of sustained rotation and RWM stability with beta above the no wall limit before the eventual RWM growth is observed.

1Work supported by U.S. DOE Contracts DE-AC03-99ER54463, DE-AC02-76CH03073, and Grant DE-FG03-89ER53297.

J.T. Scoville
scoville@fusion.gat.com
General Atomics

Special instructions: MHD, immediately following MS Chu

Date submitted: July 11, 2000

Electronic form version 1.4