DATA MANAGEMENT AND VISUALIZATION TO ENHANCE SCIENCE DISCOVERY THROUGH ADVANCED COMPUTING IN THE PSACI PROJECT

> D.P. Schissel, J. Schachter, General Atomics S. Kruger, SAIC

X. Tang, Princeton Plasma Physics Laboratory

Presented to 42nd Annual Meeting of the Division of Plasma Physics

> October 23–27, 2000 Quebec City, Canada

NIMROD simulated pressure stored in MDSplus and visualized with IDL

OUR GOAL IS TO MAXIMIZE THE EFFECTIVENESS IN EXTRACTING SCIENTIFIC UNDERSTANDING IN PSACI

- Advanced computing to solve critical physics problems requires a capable infrastructure and the necessary tools
- Allow the scientists to concentrate on their science, not computer science
 - Provide them with their required infrastructure
- Strengthen coupling between modeling teams & theory and experiment
- Minimize duplication of effort

PLASMA SCIENCE AND ADVANCED COMPUTING INITIATIVE (PSACI) RESEARCH PROGRAM

- Funded by the USDOE/OFES during FY00
 - Compliments new DOE Office of Science Initiative "Science Discovery through Advanced Computing" (SDAC) which has replaced SSI
- Enhance physics capabilities in scientifically advanced simulation codes
- Research, development, & deployment of better mathematical models & computational methods for optimal utilization of modern supercomputing
 - Parallel programming for scalability of modern MPP's
 - Advanced visualization for higher-dimensionality data
 - Object–oriented architecture for better community access
- Build advanced, shared diagnostics to provide a better bridge between simulation, theory & experimental communities

WE HAVE TEAMED WITH THE TWO FY00 PSACI PILOT PROGRAMS TO ENHANCE THEIR SCIENTIFIC PRODUCTIVITY

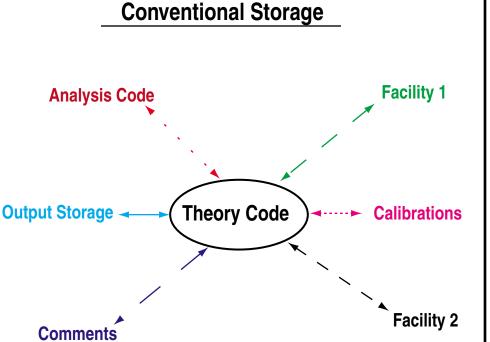
- Microscopic Turbulence and Transport Simulation (W. Nevins as PI)
 - With LLNL, PPPL, U. Maryland, GA, UCLA, U. Colorado
 - Mutually benchmarked, well diagnosed, microturbulence codes
 - Better understanding of turbulent transport to aid interpretation & planning of experiments
- Macroscopic Simulation of Fusion Plasmas (S. Jardin as PI)
 - With PPPL, SAIC, LANL, GA, U. Wisconsin, NYU, MIT, U. Colorado, SNL
 - Scalable 3D nonlinear MHD simulation capability with a wide user base
 - Mutually benchmarked comprehensive physics model with efficient & accurate solutions
- Advanced data analysis and visualization capabilities
 - Prototype national data repository for storing code output
 - Prototype visualization to be used as routine part of data analysis
- Firm base for further expansion with possible support from new DOE SDAC

ACHIEVING OUR GOAL TO SUPPORT PSACI REQUIRES A UNIFIED EFFORT TO ADDRESS COMPUTER SCIENCE ISSUES IN SUPPORT OF ALL FUNDED PROGRAMS

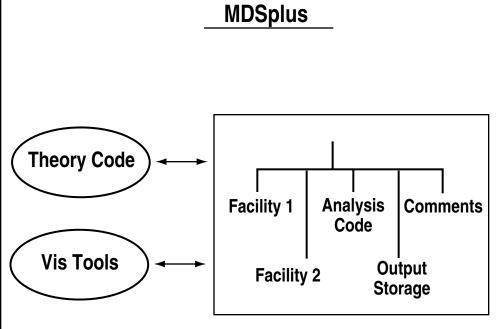
- A common, shared, secure network–enabled interface to all data
 - All data means from both experimental and modeling sources
- Shared methodology for organization, archival, and retrieval of all data
- Development of data browsing and visualization applications
 - These will exploit the common data interface for wide applicability
- Development of common, shared tools for data manipulation & analysis
- Effective shared development and reuse of software components

MDSplus PROVIDES A COMMON, SHARED, SECURED NETWORK ENABLED INTERFACE TO ALL DATA

- MDSplus is a data system jointly developed by MIT, LANL, & Padova Italy
 - Provides for acquisition, storage, access, and organization of data
 - Secure client/server system utilizing TCP/IP
 - Can store simulation and theoretical data
- Presently used to serve data at 4 sites in US and 8 worldwide
 - Includes the 3 large US tokamaks
 - Clients at many sites
- Many physics analysis codes have been or are being integrated with MDSplus
 - Transport: MIST, ONETWO, TRANSP
 - MacroStability & Equilibrium: DCON, EFIT, M3D, NIMROD, PEST
 - MicroTurbulence: GS2



MDSplus CHARACTERISTICS


- Hierarchical and self descriptive
- Supports a variety of primitive data types
 - Byte, word, long, float, double, complex, string, expressions, actions
 - Built in expression evaluator (TDI)
- Remote access available currently from
 - Fortran, C/C++, Java, IDL, Matlab, and labview
- Tools exist for quick display of data and structure
 - X–windows and Java scope & traverser
 - IDL tools (ReviewPlus, Pslice, etc.)
 - Matlab tools
- Supported platforms (so far)
 - AIX, Cray Unix, Digital Unix, HP/UX, Irix, Linux, Mac OS, Sun OS, VMS, Win32 (windows 9x, NT, 2000)

MDSplus CAN UNIFY DATA ACCESS FOR THE THEORETICAL COMMUNITY JUST AS IT HAS FOR THE EXPERIMENTAL COMMUNITY

- Each code needs it own interface
- Must know data format and file location
- Each code has its own graphics tool
- Hard to share results

- One interface to many data types
- Only need location of data in tree
- Utilize existing visualization tools
- Easy to share results with both the theoretical and experimental community

A RELATIONAL DATABASE WORKS IN CONCERT WITH MDSplus

MDSplus stores all the data

- Not optimized for queries across multiple shots
- Approximately 10 TB stored in the experimental programs
- A relational database stores highlights of the data
 - Optimized for queries
 - Drill down to a smaller dataset for more detailed examination

• Essential requirements of a relational database

- Archival storage of highlights of the data
- Keeps track of code runs (e.g. which NSTX pulses have NIMROD runs?)
- Provides a convenient interface to the data visualization software
- Efficient and flexible method to support schema evolution
- Transparent access across the wide area network

• Relational database is in use at DIII–D (see Burruss poster NP1.106)

- A system to track code runs has been implemented & is available to all collaborators
- Highlights of DIII–D experimental data is also being stored

CODE RUN DATABASE LETS USERS TRACK PHYSICS ANALYSIS CODE RUNS

Select a TRANSP run Selected SHOT: 960116024 TREE: TRANSP04 RUN ID: 960116024						
Selected s	HOI: 96011602		TRANSP04		ID: 960116024	
	SHOT	TREE	RUN_ID		SHC	
0	960116018	TRANSP01	960116018	H-mod	le, ELMy	
1	960116018	TRANSP02	960116018	* Duplicated C-Mod shot: 960116018 TR/		
2	960116024	TRANSP01	960116024	* Duplicated C-Mod shot: 960116024 TRi		
3	960116024	TRANSP02	960116024	* Duplicated C-Mod shot: 960116024 TRi		
4	960116024	TRANSP03	960116024	sawteeth on icrf only * Duplicated C-Mc		
5	960116024	TRANSP04	960116024	bench	umark latest KFA * Duplicated C-Moo	
6	960116024	TRANSP05	960116024	chang	ge fmini * Duplicated C-Mod shot: {	
7	960116024	TRANSP06	960116024	8 m.c	RunSelector Set Query	
8	960116024	TRANSP07	960116024	chec	/	
9	960116024	TRANSP08	960116024	tell	Other Columns to Display:	
SHOT COMMENT for row 5:				bt date_run		
				deleted		
benchmark latest KFA * Duplicated C-Mod shot: {					experiment full_pathname	
Using Ti from Te * Duplicated C-Mod shot: 9601: benchmark rollback version (with new ALTROOT st				goodness		
				WHERE CLAUSE:		
Set query Redo query Show inheritance Preferences						
				levgeo = 5 and date_run > ′1-DEC-1999′]		
OK Cancel						
				1		
					Done Apply Reset Show Query	

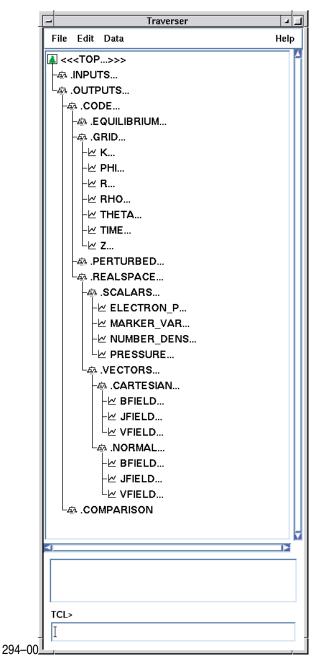
• GUI displays information from the code run database

- Provides a formalized method for tracking code runs
- Hierarchical organization

• Easy to integrate into existing tools

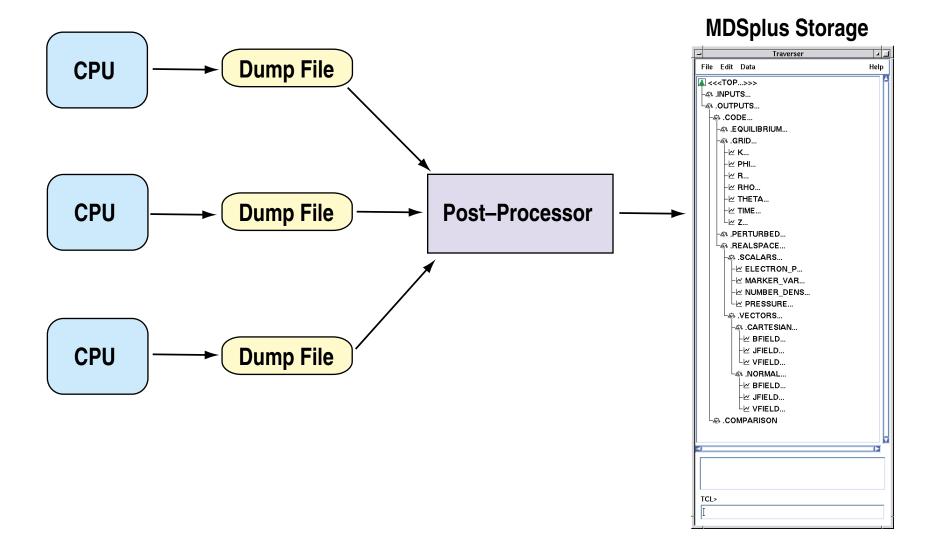
WORK SCOPE IS REDUCED BY LEVERAGING EXISTING EFFORT

- Integrate simulation codes into the existing data sharing methodology
 - MDSplus for storing all the data, MS SQL RDB for storing highlights
 - New storage for NIMROD and M3D have been created
- Utilize existing DIII–D MDSplus server hardware for storing simulation data
 - NIMROD and M3D data stored on the GA server
 - Work began immediately on the new NIMROD and M3D software
 - Allows accurate hardware specification to be set for a subsequent purchase
- Utilize existing visualization tools for simulation data
 - Generalized interactive plotting capability brings immediate benefit (ReviewPlus)
 - Tools more specific to simulation needs can be rapidly developed by using existing code libraries: NIMROD & M3D needs being determined

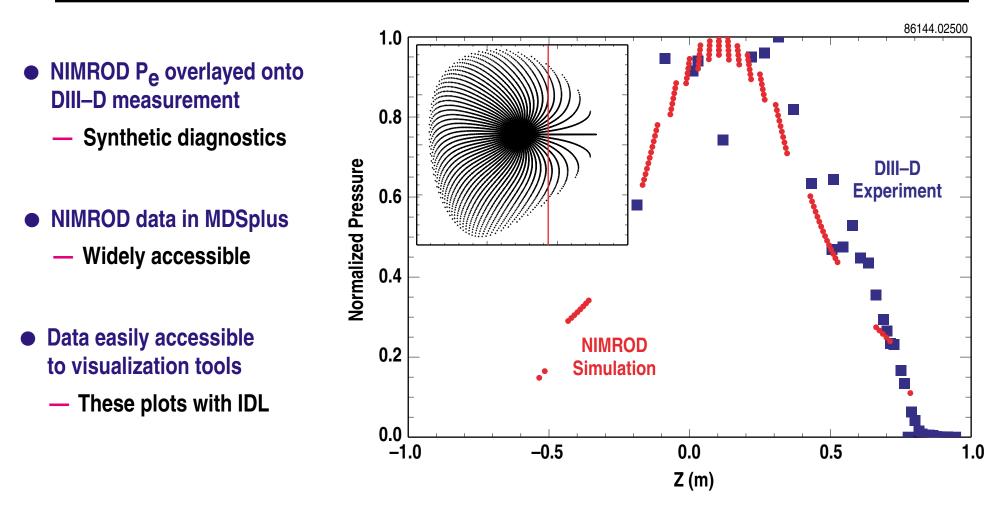


THE MDSPLUS SERVER AT THE DIII-D NATIONAL FUSION FACILITY

- Compaq AlphaServer 800 5/500 running True64 Unix
 - 512 MB RAM, 9 GB disk
 - 1999 purchase price of \$11K
- nStor GigaRAID AA RAID Disk System
 - 100 GB at RAID 5 with a hot spare and dual-ultrawide SCSI
 - 1999 purchase price of \$22K
- An additional 200 GB was added in 2000 for \$10K
- This system heavily used at DIII—D
 - 100 on–site users, numerous off–site users
 - 8900 DIII–D pulses totaling 70 GB
 - Test system for NIMROD, M3D, and GS2

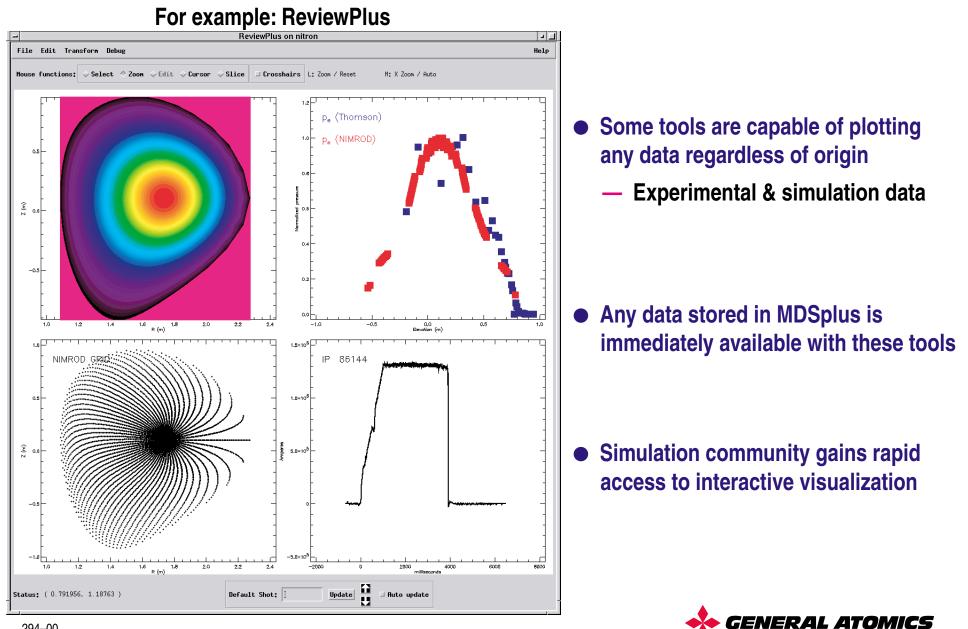

NIMROD AND M3D CODE RESULTS ARE BEING STORED IN MDSPLUS

- Both inputs and outputs can be stored
 - Presently only outputs have been written
- Structure of tree facilitates code comparison
 - Same quantities on grid with same name
- Several runs for NIMROD, one for M3D store
 - Has been used for testing purposes
 - Users have writen in their own code runs
 - MDSplus client & ReviewPlus installed at SAIC
- MDSplus storage provides a factor of 4 compression for M3D
 - NIMROD is less due to the binary dump file which stores only 1 representation of the data



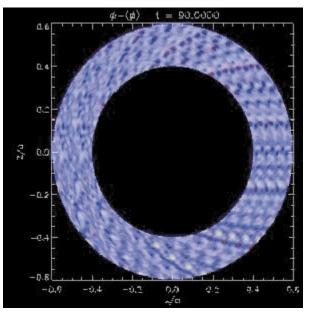
DATA IS WRITTEN INTO MDSplus FROM A POST-PROCESSOR

COMPARISON OF NIMROD SIMULATION TO DIII-D EXPERIMENTAL DATA IS FACILITATED WITH MDSplus



• With MDSplus the data is easy to retrieve & the plot is easy to create

- Today other simulation data is hard to retrieve and therefore the plot is difficult
- Requires phone calls and emails & takes a day to create



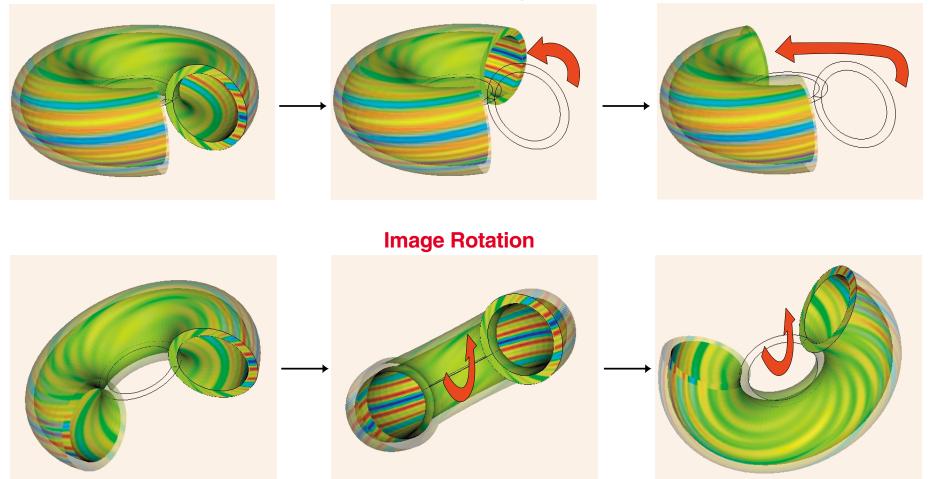
UTILIZE EXISTING VISUALIZATION TOOLS FROM THE EXPERIMENTAL COMMUNITY WHERE POSSIBLE

SCIENTIFIC VISUALIZATION OF LARGE DATASETS

- Development of common, shared tools for data browsing, visualization, data manipulation, and analysis
- Create interactive multidimensional capability allowing browsing data in time, space, and context
- Ability to combine and use data from different repositories in an integrated product
- MDSplus API allows access from any visualization tool

Density Fluctuations

Microturbulence Simulation via the Gyro code - J. Candy


2D Tokamak Edge Turbulence Data via BES – G. McKee

Density Fluctuations

INTERACTIVE SCIENTIFIC VISUALIZATION OF MICROTURBULENCE DATA

• Using VTK with OpenGL on a Linux PC with hardware graphics rendering

Interactive Cutting Plan

Microturbulence Simulation via the Gyro code - J. Candy

FUTURE WORK WILL EXAMINE WHETHER OUR SOLUTION CAN SCALE TO TERAFLOP COMPUTING

- It has been estimated that simulations will produce on the order 100 TB/year
 - Experimental community has a total of 10 TB
 - Accumulating at an expanding rate: today it is at 1 TB/year
- MDSplus will be tested on an existing multi–100 TB mass storage system
 - HPSS has been used successfully in the Nuclear Physics community
 - Data retrieval speed both within HPSS and across the ESNET will be evaluated
 - We will develop a plan to support TB datasets in future years
- Advanced scientific visualization to efficiently examine larger datasets will be pursued
 - Develop state of the art graphics packages utilizing technology such as OpenGL
 - Examine the use of display wall technology for collaborative exploration
 - Inexpensive desktop graphics versus centralized systems: What are the efficiency issues of transporting the data versus the visualization?

A SMALL SCALE DEDICATED EFFORT WILL HAVE A LARGE SCALE BENEFIT

- This work will have an immediate benefit to the simulation community
 - Allow scientists to concentrate on their science
 - Facilitate the comparison of experiment and simulations
 - Interactive visualization of simulation data
- It will demonstrate the path to Terascale data management & visualization
 - This will be a long term benefit to the entire science community
- We will continue to reach out to the expertise outside of plasma sciences
 - Kwan–Lu Ma (UC Davis): visualization of large datasets
 - C. Johnson (U. of Utah): interactive large scale computation
 - Kai Li (Princeton U.): display wall
 - R. Mount (SLAC): HPSS
- Full work scope should require on the order 1–2 FTEs & minimal capital expense
 - With leveraging from ongoing activity within the MFE experimental program

