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Abstract

Fast (100 kHz bandwidth) measurements of the edge electron temperature have
been performed in DIII-D using a recently installed diagnostic based on detection
of harmonics generated in the current spectrum of a single Langmuir probe driven
by high-frequency sinusoidal voltage. Electron temperature fluctuations with
relative root-mean-square (rms) levels ranging from 0.3 - 0.5 at the separatrix to
0.5 - 0.8 in the scrape-off layer are found in both L and H modes in DIII-D. The
fluctuations give rise to a turbulent conductive heat flux. Though the fluctuations
are broadband with significant energy throughout the measurable range (up to 100
kHz), most of the heat transport occurs at frequencies below 50 kHz. Measured net
conductive turbulent heat flux in L-mode is typically about 1 W/cm2 at the
separatrix, falling exponentially with the radius. Multiplied by the area of the last
closed flux surface this gives about 0.8 MW of total power conducted through the
separatrix, which is comparable to the difference between the total input power
and the total radiated power. Conductive heat flux in H-mode is considerably
lower and its contribution to the power balance is small.
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Motivation for Fast Edge Te Measurements in DIII-D

Fast measurements of the edge electron temperature are needed to:

• Measure the turbulent heat flux in the boundary of DIII-D in L and H
mode

• Answer the questions:
∗ is the H-mode transport barrier primarily a particle convection

barrier, or heat conduction barrier?
∗ is edge heat transport dominated by electrostatic turbulence as

particle transport is?
• Evaluate errors in turbulent particle flux measurements due to

neglecting Te fluctuations
• Obtain time-resolved RMS amplitudes, cross-phases, particle and heat

fluxes, to compare with predictions of analytic theory and numerical
simulations
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 Te Fluctuations and Turbulent Fluxes
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Harmonic Diagnostic Basics
Current to a DC-floating probe driven by sinusoidal voltage
can be expressed as a series of sinusoidal harmonics [1]:

   where      - amplitude of mth harmonic

                            - Bessel functions of integer order k

For eU0/kTe << 1:

           Thus Te can be determined from the ratio
           of the amplitudes of 1st and 2nd harmonics

The error of this approximation for eU0/kTe= 1 is only about 5% [1]
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[1] Boedo et al, Rev. Sci. Instrum. 70 (1999), 2997
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Harmonic Diagnostic on DIII-D
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Novel Features of the Harmonic Diagnostic on DIII-D

• Fully digital data processing for improved phase resolution:
∗ Raw voltage and current signals are digitized at a sample rate of 5 MHz
∗ Amplitudes of current harmonics are extracted by digital filtering
∗ This digital procedure does not introduce phase delays

• Active drive voltage feedback for improved dynamic range:
∗ Ratio of the amplitudes of 1st and 2nd current harmonics is determined in

real time using an analog divider
∗ This ratio is kept within preset limits        by providing

feedback to the function generator

• Real time Te measurement for long pulse capability:
∗ An analog multiplier is used to multiply the ratio of the current harmonic

amplitudes by the drive voltage amplitude producing a signal proportional
to Te

∗ This “slow” (about 10 kHz bandwidth) signal can be used to monitor Te on
long time scales

104 2 ≤≤ ωω II
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Experimental Arrangement on DIII-D

Separatrix

Rsep

Probe

Thomson
Scattering

Vf1

Vf2

Te or Isat

Double
probe

Probe head layout

Poloidal electric field is estimated as:
Eθ  ≈ (Vf2- Vf1) /a

a

The total in-and-out (plunge) time is about 0.2 s
The total plunge length is about 15 cm

Rsep is the major radius of the separatrix
(calculated by EFIT) at the probe locationdRsep
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Slow Time Scale: Comparison with Other Techniques
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Edge Electron Temperature Fluctuations in L-mode
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Edge Electron Temperature Fluctuations in H-mode

Shot# 101985
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Absolute and Relative Te Fluctuation Levels
in L- and H-modes
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Statistical Moments
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Skewness and Kurtosis of Te Fluctuations
in L- and H-modes
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Spikes in Te, Real or Not?

The observed spikes in Te may be:
• real
• due to secondary electron emission caused by fast ions, X-rays, UV, etc
• due to poor signal to noise ratio

Since   where  α ~ 3, Te spikes shall translate in VfekTepf αϕϕ −=

• If a Te spike is real, Vf is likely to have a negative spike
• If a Te spike is due to the secondary emission, Vf is likely to have a
   positive spike
• If a Te spike due to poor signal to noise ratio, Vf is likely to have
   no spike

This can be checked using conditional averaging:
• Spikes in Te above certain level are found for a given time interval
• Te and Vf  data are averaged around the spikes
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Conditional Averaging of Te and Vf
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Te Fluctuation Power Spectra in L- and H-modes
H-mode, Shot# 101985L-mode, Shot# 102024
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Terms Contributing to Turbulent Heat Flux, L-mode
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Terms Contributing to Turbulent Heat Flux, H-mode
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Turbulent Heat Flux is Lower in H-mode Due to Worse
Correlation of Fluctuations
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Product of the fluctuation amplitudes
is higher in H-mode throughout most
of the spectrum

Fluctuations are better correlated in
L-mode at low frequencies (f < 40 kHz)
except for a couple of quasi-coherent
peaks in H-mode

Total conducted heat flux is about 3
times higher in L-mode!
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Radial Profiles of Conductive Heat Flux
in L- and H- modes

Conductive heat flux can be calculated in time domain: θ
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Conductive Heat Flux and Power Balance, L-mode
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Conductive Heat Flux and Power Balance, H-mode
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Summary
• Electron temperature fluctuations with relative levels of 0.3 - 0.5

near the sepatratrix and 0.5 - 08 in the scrape-off layer are present
in both L- and H-modes

• Absolute Te fluctuation levels are close in L- and H-modes, while
relative levels are higher in H-mode

• Te fluctuation spectra may have regions consistent with 1/f
dependence with best fit obtained inside the separatrix in L-mode

• Te fluctuation statistics is non-Gaussian in both L- and H-modes.
The deviation from Gaussian statistics is larger in H-mode

• Te and Eθ fluctuations are better correlated in L-mode at low
frequencies (f < 40 kHz).

• Quasi-coherent peaks are observed in Te and Eθ  spectra in H-mode
• Conductive turbulent heat flux is considerably higher in L-mode
• Contribution of the conductive turbulent heat flux to the power

balance is significant in L-mode and small in H-mode


