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ABSTRACT

Nonlinear self-consistent MHD stability simulations of neoclas-
sical tearing modes (NTM) in high betaN Advanced Tokamak
(AT) are presented. Radially localized electron cyclotron current
drive (ECCD) current pro�le control is considered based on DIII-
D discharge # 99411 in which �N = 3:9 and H89P-factor=2.9
are reached. Simulations were performed with the full 3D non-
linear code NFTC. Neoclassical terms are included in the basic
equations for the magnetic �eld and pressure. An e�ective fully
implicit numerical scheme allows the transport pro�le to evolve
self-consistently with the nonlinear MHD instabilities and an exter-
nally applied source such as ECCD. NTM activity with m/n=2/1 is
found in simulations to correspond to experiment. It is shown that
magnetic islands can be quickly suppressed by localized ECCD at
q=2 before the mode grows substantially. The time response and
nonlinear evolution of the 2/1 island width for ECCD and required
modulation phasing, the CD location with respect to the q=2 sur-
face, and the width of the spatial distribution are determined. The
possibility of q-pro�le modi�cation by ECCD well before MHD ac-
tivity to keep qmin > 2, so that the discharge evolves stably is also
discussed.
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GOAL

� Simulations of the nonlinear MHD stability of high �N AT dis-

charge in DIII-D by three-dimensional MHD code NFTC.

-Discharge # 99411 at the moment t=1800ms (qmin = 1:67)

- The problem of critical seed island necessary to triger NTMs.

- Comparison with experiment.

-Suppression of NTM instability by radially localized ECCD around

q=2.(Magnitude of ECCD, width of driven current, location)

� Motivation. Discharges with qmin > 1:5 and NCS (Negative

Central Shear) are the leading scenario for AT (Advanced Toka-

mak) operation in DIII-D.

- NTM modes still remain a signi�cant obstacle to approaching

the ideal � limit.

- High �N (�N � 3) is oserved in long pulse NCS discharges.No

sawteeth or �shbons to provide the seed island.



MODEL

� The nonlinear three dimensional evolution of a toka-

mak plasma is described by the full (nonreduced,

compressible) MHD system of equations in general

toroidal geometry.

� We seek the solutions fV;B; Pg by decomposition:

V(�; �; '; t) = V0(�; �) + V̂(�; �; t)
| {z }

n=0

+V(�; �; '; t)
| {z }

n6=0

B(�; �; '; t) = Beq(�; �) + B̂(�; �; t)
| {z }

n=0

+B(�; �; '; t)
| {z }

n 6=0

P (�; �; '; t) = Peq(�) + P̂ (�; �; t)
| {z }

n=0

+P (�; �; '; t)
| {z }

n6=0

� Our problem is to �nd fV;B; Pg for a given fV0;Beq; Peqg.

� The solutions satisfy the �xed boundary conditions:

Bn = 0; Vn = 0; P = 0:

Neoclassical terms in the model are included :

� Helical and axi-symmetric bootstrap current terms

are added into the magnetic �eld equation.

� Polarization current e�ect is included in the mag-

netic �eld equation as a helical current perturbation.

� Radially localized toroidal current density fromECCD

is included in the magnetic �eld equation .

� The equation for pressure is modi�ed by incorpo-

rated the perpendicular transport across a seed mag-

netic island and along magnetic �eld lines .
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BASIC EQUATIONS.

�
@V

@t
= ��[(V0 � r)V+ (V � r)V0]� �0rP +

+[[r�Beq]�B] + [[r�B]�Beq] + � 4V �

��[(V̂ � r)V+ (V � r)V̂] + [[r� B̂]�B]

+[[r�B]� B̂]� �[(V � r)V] + [[r�B]�B]; (1)

@B

@t
= [r� [V�Beq]] + [r� [V0 �B]]� [r� (�[r�B])] +

+[r� [V̂�B]] + [r� [V� B̂]] +

+[r� [V�B]] + [r� EP]; (2)

@P

@t
= �r � (PeqV)�r � (PV0)� (�� 1)[Peq(r �V)

+P (r �V0)]�r � (P̂V)�r � (P V̂)� (�� 1)[P̂ (r �V)

+P (r � V̂)]�r � (PV)� (�� 1)[P (r �V)]

+r? � (�?r?P ) +rk � (�krkP ); (3)

�
@V̂

@t
= ��[(V0 � r)V0 + (V0 � r)V̂+ (V̂ � r)V0]� �0rP̂ +

+[[r�Beq]� B̂] + [[r� B̂]�Beq] + � 4 V̂ � (4)

��(V̂ � r)V̂+ [[r� B̂]� B̂] +

+[[r�B]�B]n=0 � �[(V � r)V]n=0;

@B̂

@t
= [r� [V̂�Beq]] + [r� [V0 � B̂]]� [r� (�[r� B̂])] +

+[r� [V̂� B̂]] + [r� [V�B]n=0] + [r� ÊP]; (5)

@P̂

@t
= �r � (PeqV̂)�r � (P̂V0)� (�� 1)[Peq(r � V̂)

+P̂ (r �V0)]�r � (P̂ V̂)� (�� 1)P̂ (r � V̂)�

�(r � (PV))n=0 � (�� 1)[P (r �V)]n=0

+r? � (�?r?P̂ ) +rk � (�krkP̂ ) +Q; (6)

P = f(�; T ): (7)
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MODEL.

The sources of the current density

The total parallel current density is the sum of Ohmic current and

the non-inductive current:

~j = jeq + ĵ + ~j = j
 + jBS + jpol + jcd;

Axisymmetric and helical components of current density perturba-

tion:

ĵ + ~j = (�jeq + ĵ
 + ĵBS + ĵcd)
| {z }

n=0

+~j
 + ~jBS + ~jpol + ~jcd
| {z }

n6=0

Source term for the equations is included as [r�EP], where

EP = ÊP = �(�jeq + ĵBS + ĵcd) for n = 0

EP = �(~jBS + ~jpol + ~jcd) for n 6= 0

The bootstrap current jBS is included in the simplest model

form:

ĵBS = Ag � 1:46
p
"[�

@P̂=@�

Bpol

];

~jBS = Ag � 1:46
p
"[�

@Pn6=0=@�

Bpol

];

where Ag = O(1) is the geometric parameter of the model.

The polarization current ~jpol is included in the model form:

~jpol = �
W 2

th

W 2

~jBS

where Wth is the parameter of the model.
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� Representation of current density from ECCD
Current density jcd from ECCD is represented as a radially
localized toroidal current

Jcd = jcde'; jcd = j( ?)

on the perturbed helical magnetic ux  ?.

A normalized helical ux function :

~ ? = �(�� �s)
2 �

W 2
mn

8
cos(m� � n'+ ��)

represents the local behaviour near the resonant surface �s.

The island width W is de�ned as

W = 4

s
q2
s
Y 1(�s)

m�sq
0
;

where Y 1 =
p
gB1 and g is a metric element.

De�ne

jcd( ~ 
?) = Icd

1

2�3=2Wcd

e
~ ?=W 2

cd

The following simpli�ed form of jcd( ~ 
?) is used in NFTC code.

jcd = Icd
1

2�3=2Wcd

e�(���0)
2=W 2

cd[1� 1
8
(Wmn

Wcd

)2 cos(m� � n'+ ��)]

Parameters:

- Icd(tkW ) is the total ECCD current.This can have any ar-
bitrary dependence on time. A square wave is used in the
simulations presented here.

- Wcd is the width of radial distribution,
- �� = �0 � �s denotes the o�set of the driven current layer
from the rational surface.

- �(t) = �� is the phase �tted to the magnetic island rotation.
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MODEL

� Modi�cation of the transport equations

@P

@t
= � � �+r? � (�?r?P ) +rk � (�krkP );

@P̂

@t
= � � �+r? � (�?r?P̂ ) +rk � (�krkP̂ ) + [rk � (�krkP )]

n=0
+Q;

The unit vector along magnetic �eld line is de�ned as :

btot �
Btot

jBtotj
�=
Beq + B̂+B

jBeqj
� beq + b̂+ b:

The di�erential operator along magnetic �eld line is:

rkPtot = (btot � r)Ptot = (beq � r+ b̂ � r+ b � r)(Peq + P̂ + P )

The total heat conductivity operator is:

r2

k
Ptot

���
n6=0

= beq � r(beq � rP + b � rPeq) +

+ beq � r(b � rP ) + b � r(beq � rP ) + b � r(b � rPeq) +

+ b � r(b � rP ) +

+ [b̂ � r(beq � rP + b � rPeq) + b � r(beq � rP̂ + b̂ � rPeq) +

+ beq � r(b̂ � rP ) + beq � r(b � rP̂ ) +

+ b̂ � r(b � rP ) + b � r(b̂ � rP̂ + b̂ � rP + b � rP̂ ) +

+ b̂ � r(b̂ � rP + b � rP̂ )];

r2

k
Ptot

���
n=0

= beq � r(b � rP ) + b � r(beq � rP ) + b � r(b � rPeq);

r2

k
P̂
����
n=0

= (beq + b̂) � r((beq + b̂) � rP̂ ):

Underlined terms in the cylindrical approximation:

r2

k
Pm

���
n6=0

cos(m� � n') =

8<
:

1

jBeqj2

2
4�F 2P + FP 0

eq

1
p
g
Y 1

3
5 +

+

2
4Y 1

1
p
g

@

@�
(

1

jBeqj2
Y 1

p
g

@P

@�
)

3
5
9=
;
mn

cos(m� � n');Fmn = �B3

eq
(
m

q
� n):
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ADVANCED TOKAMAK DISCHARGE IN DIII–D
(AT DURATION ENDED BY 2/1 TEARING MODE)
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Helical magnetic perturbations in # 99411 discharge .

� First splash at t=1300ms after qmin � 2:0 and �N � 3:0

� Second low level splash when q0 decreases to the value 2.0.

� The third, basic splash at t=1800ms. Perturbation increases
by 20 times.�N = 3:78; qmin = 1:67 .

Mirnov signal, rms Btheta.  n=1 
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Mirnov signal, rms Btheta. n=2 
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Equilibrium radial pro�les in # 99411 discharge.

� At t=1800ms only one rational surface q=2 located on �s =
0:74aH and �q = q0 � qmin = 0:13, Shear S=1.28.

� At t=1915ms two rational surfaces located on �
1
s
= 0:42 and

�
2
s
= 0:68.S(1) = �0:16; S(2) = 0:43.

q-profile
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Nonlinear calculations of NTM for eq.1800ms .

� Find Wth for m/n=2/1 as amplitude of jpol with \Eq.1.8s".

� Two parameters of the model: Ampl and Wth with Wd = 0.
- First, increase Ampl � eigefunction ( withWth = 0 until NTM
is exited. Ampl, Wth.
-Second, with �xed Wcr change Wth until W(t), Wsat satura-
tion will be found.

� Then found Wth

a
= 0:0235 and this is used for all equilibriua.

�

Wcr

a
= 0:045 and Wsat

a
= 0:2

Islands evolution , Eq.1800 msec, qmin=1.67 
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Time evolution of nonlinear solution.

� Helical perturbations of magnetic �eld ��B
�(�; t) and pressure

P (�; t) for m/n=2/1.

� Axisimmetric component of quasilinear corrections for poloidal
�eld and pressure.

� Pro�les alter from green to red

Time evolution of  Y1s(2/1) profile( Eq.1800)
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Critical island width evaluation.

� Magnetic islands m/n=2/1 evolution with di�erent seed is-
lands for eq.1.8s.

� Bootstrap current density for m/n=2/1 in the �xed radial
point.

W m/n=2/1 islands evolution , Eq.1800 msec 
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Time evolution of basic harmonics in nonlinear solution.

� m/n=2/1 NTM instability excites toroidal modes n=2 with

same helicity.

� Harmonic m/m=4/2 increases to the levelW4=2 � 0:09aH and

m/n=6/3 has W6=3 � 0:07aH .

� The double NTM 5/3 has the large island widthW
1

5=3 = 0:1aH

and W
2

5=3 = 0:07aH located in the middle of plasma area with

low shear on q=5/3. Low toroidal coupling with 2/1.

Islands evolution , Eq.1800 msec, qmin=1.67 
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Magnetic islands due to NTM instability.
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Magnetic islands due to NTM instability.
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Magnetic islands due to NTM instability.
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Comparison of NTM calculations with experiment .

� Amplitude of magnetic perturbation n=1 and magnetic island
width W2=1 as a function of time.

� The m/n=2/1 harmonic dominates in magnetic perturbation.

� The level and radial pro�le of quasilinear correction of equi-
librium poloidal magnetic �eld Eq.1.8s corresponds to MSE
diagnostic.

Comparison with experiment.Signal on Mirnov coils Bp. 
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Conventional double tearing instability when qmin crosses 2.0 .

� Succsesive changes of eigenfunctions for decreasing qmin.

� When q0 = 2:25 ( qmin = 1:993) and q0 = 2:2 (qmin = 1:95
) conventional double tearing mode 2/1 is weakly unstable .
Corresponds to t=1300ms in discharge.Nonlinearly stabilizes.

� When q0 = 1:87(qmin = 1:67) conventional tearing mode is
stable.Nonlinear NTM unstable . Corresponds to t=1800ms
in discharge.
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�N limit due to NTM instability.

� Comparison of theoretical limit �cr
N
= C �

p
S with experimen-

tal data for # 99411 discharge.

� Equilibrium pro�les and papameters are �tted to the moment
t=1.8s in experiment.Linear approximation of qmin(t) = 2:075�
0:225t in the period of instability.

� When t=1.3 parameter q0 = 2:0 and qmin = 1:78 the �rst
MHD burst happens. When t=1.8 the main NTM instability
is excited.

Time evolution of Beta_N (exp.) and NTM Beta_N limit. 
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Decreasing of central pressure due to NTM instability .

� Time evolution of quasilinear correction of equilibrium pres-
sure pro�le shows the decreasing of central pressure due to
NTM instability.

� Heat conductivity is arti�cially increased by two orders in the
area of magnetic islands overlapping.(4/2,6/3,5/3,..).

Pressure collapse. Quasilinear correction P^(m=0)
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Magnitude of ECCD current needed for NTM suppression.

� a) W(t) with di�erent magnitude of Icd/Ip. Wcd = 0:06aH .
Island width begin to oscilate. Critical seed island W cr

2=1
=

0:045aH. If Icd=Ip > 0:055 then Wsat = Wmax = 0:02aH .

� b) W sat

2=1
and Wmax

2=1
vs. Icd/Ip.
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The e�ect of driven current layer width Wcd .

� The e�ectiveness of magnetic islands suppression increases with
decreasing of driven current layer Wcd, when the magnitude
of Icd/Ip is constant (here 0.023).

� The less Wcd the less period of oscillations.Wmax � Wcd . The
best conditions: if Wcd > 0:5W cr

seed
then no oscillations during

period of suppression.
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The e�ectiveness of magnetic islands suppression.

� Area of magnetic islands suppression on the planes: (Icd=Ip;Wcd=aH)
and (Icd=Ip;W=Wcd).

� Each point on curves corresponds to the same maximal mag-
netic islands width equal W2=1 = 0:06aH obtained during cal-
culations.
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The e�ect of max(Jcd) Location

� Maximum of stabilization e�ect occurs when �� = 0.When
�� � Wcd=aH , then the stabilization e�ect is lost.Wcd =
0:06aH for these cases.
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ECCD suppression vs. islands rotation .

� Magnetic islands width during ECCD suppression with di�er-
ent islands rotation.

� Comparison of ECCD eÆciency for only axi-symmetric com-
ponent and axi-symmetric and helical components of jcd.
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CONCLUSIONS

� Stability calculations by NFTC of high �N ?H AT in DIII-D (# 99411

discharge ) were performed.

Comparison of nonlinear NTM calculations with experimental data

shows

- correspondence with the level of the helical magnetic perturbations

with Mirnov signal

- correspondence of quasilinear correction of equilibrium poloidal �eld

with MSE diagnostic.

� Explanation of critical seed island were done as aftere�ect of conven-

tional tearing instability when qmin crosses the value qmin = 2.

� A radially localized current from ECCD is included for NFTC code

as a source term. Driven current jcd depends on perturbed magnetic

surfaces and has helical and axisymmetric components in its repre-

sentation. Self-consistent calculations using the NFTC code show the

e�ectiveness of ECCD suppression of neoclassically destabilized mag-

netic islands.

� ECCD current which is needed for the island suppression increases

parabolically with the driven current layer width Wcd

The less Wcd is , the less total current is needed for suppression.

Magnetic island can be suppressed to the level of order Wcd. For

Wcd < 0:05aH and Icd = 0:05Ip the seed magnetic islands are sup-

pressed and NTM stabilizes at t=1800ms in discharge # 99411.

� Localization of max(jcd) relating rational surface of mode is very im-

portant fro stabilization. Maximum shift is of order ��max �Wcd=aH ,

which is equal to 0:05aH for # 99411 discharge.
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