CRITERIA FOR CURRENT DRIVE STABILIZATION OF NEOCLASSICAL TEARING MODES

F. W. Perkins¹, R. W. Harvey², R. LaHaye³

- ¹ Princeton DIII-D Collaboration, General Atomics, San Diego
- ² CompX, P. O. Box 2672, Del Mar, CA
- ³ General Atomics, San Diego, CA

OUTLINE

- Island Evolution Equation
- Bootstrap and Current Drive Terms
- Four Criteria
- Projections for Reactor-Scale Devices
- Conclusions

ISLAND EVOLUTION EQUATION: MAGNETIC FIELDS

1. Assume magnetic field which has good helical flux surfaces $\chi = constant$.

$$B = \frac{g}{R} \phi + \frac{q}{q_o} \frac{\phi \times \mathbf{V} \psi}{R} + \frac{\phi \times \mathbf{V} \chi}{R}$$

$$\chi = \chi (\psi, \alpha)$$
 $\alpha = \theta - \phi / q_o$

2. Assume form for helical flux function χ - Not a complete calculation

$$\Phi = \frac{\chi}{\chi_o(\psi,t)} = \text{nondimensional helical flux function} = \frac{x^2}{w^2} - \left[\frac{1 + \cos{(m\alpha)}}{2} \right]$$

3. Island width w is really the helical flux function χ

$$w^2 = 2 \chi_o r_s (\hat{s} \nabla \psi)^{-1}$$

ISLAND EVOLUTION EQUATION: BACK EMF

1. Starting point is back emf equation for helical flux

$$\frac{\partial \chi}{\partial t} = \eta \left[j_h - j_{bs} - j_{cd} \right]$$

- j_h is helical current density; j_{bs} , j_{cd} are emfs
- 2. Mechanical equilibrium requires that j_h be a function of helical flux
 - Analogous to FF' term in Grad-Shafranov equation $\frac{\partial^2 \chi}{\partial x^2} = \mu_o \; j_h(\chi)$
- 3. Form flux surface average of back-emf equation.
 - Only flux surface averages $\left\langle j_{bs}\right\rangle \quad \left\langle j_{cd}\right\rangle \quad enter$
 - Equation is not balanced in detail; only in large-scale properties matter

ISLAND EVOLUTION EQUATION - 2

4. Recast flux-surface average back-emf equation into Rutherford island evolution equation.

$$\frac{\mu_{o}}{\eta} \left(\frac{2 C_{1}}{\pi} \right) \frac{\partial w}{\partial t} = \Delta_{o}' + \Delta'$$

 Δ_o is usual tearing mode term; Δ' comes from current drive; $w^2 = 2q\chi_o/B\hat{s}$

4. Find formal expression for Δ' in terms of a helical flux function average current density $J(\psi)$

$$\Delta' = -\frac{4 \,\mu_o \,Rq}{\pi \,w \,\hat{s} \,B} \int_{-1}^{\infty} d\psi \,W(\psi) \,J(\psi)$$

• Mechanical equilibrium requires $j = J(\psi)$ - just like Grad-Shafranov Eq.

WEIGHTING FUNCTION

5. $W(\psi)$ is a weighting function for helical average current density and emfs.

• Zero response for uniform current density $\int_{-1}^{\infty} d\psi W = 0$

DRIVEN CURRENT DENSITY

1. Gaussian Profile for driven current density is centered on rational surface and modulated by $M(\tau)$

$$j_{d} = j_{cd} \exp \left\{ -\frac{\left(r - r_{s}\right)^{2}}{w_{cd}^{2}} \right\} M(\tau)$$
 $j_{cd} = \frac{I_{cd}}{2 \pi^{3/2} r_{s} w_{cd}}$

2. Form helical averages for island evolution equation:

$$J(\psi,\,\tau,\,w/w_{cd}) = \frac{j_{cd}}{V(\psi)} \oint d\alpha \, \frac{M(\alpha,\tau)}{\sqrt{\psi + cos^2(\alpha)}} \, exp \left\{ -\frac{w^2}{{w_{cd}}^2} \left(\psi + cos^2(\alpha) \right) \right\} \label{eq:fitting}$$

$$V(\psi) = \oint \frac{1}{\sqrt{\psi + \cos^2(\alpha)}} d\alpha$$

ISLAND EVOLUTION EQUATION

1. Island Evolution Equation with polarisation stabilization.

$$\frac{\mu_{o}}{\eta} \left(\frac{2 C_{1}}{\pi} \right) \frac{\partial w}{\partial t} = \Delta'_{o} + \frac{32 \mu_{o} Rq j_{bs}}{3 \pi w \hat{s} B} \left\{ 1 - \left(\frac{x_{o}}{x} \right)^{2} - \Lambda K_{1}(\tau, x) \right\}$$

 $w_{pol} = polarization \ stabilization \ half-width \ ^a 1.2 \ \rho_{tor} \qquad x_o = w_{pol}/w_{cd} \ ^a 0.3$

- 2. Function $K_1(\tau,x)$ represents stabilizing current- drive effects
- 3. Saturated island half-width $w_{sat} = \left(\frac{32}{3\pi \, \hat{s}}\right) \left(\frac{j_{bs} \, R \, q \, \mu_o}{2B}\right) \frac{1}{\left(-\Delta_o'\right)}$
 - $(-\Delta_0')$ a m/r in absence of current drive
- 4. Island size comparable to minor radius when $\beta(0) \sim 0.05$.

CALCULATION OF STABILIZING TERM $K_1(x, \tau)$

• Model for driven current layer

$$j_{\rm d} = j_{\rm cd} \exp \left\{ -\frac{\left(r - r_{\rm s}\right)^2}{w_{\rm cd}^2} \right\} M(\tau)$$
 $j_{\rm cd} = \frac{I_{\rm cd}}{2 \, \pi^{3/2} \, r_{\rm s} \, w_{\rm cd}}$

- First, average current density over helical flux surface
- Second, evaluate weighted integral over helical flux

Do this as a function of island width and τ .

ANALYTIC CURRENT DRIVE MODEL

- Driven current density model of Hegna and Callen for $\delta_{\text{J}}/2w=$ 0.707 in the $m\alpha$ (r-r_s)/w plane.
- Current density assumed uniform in pink region
- Realization requires both spatial localization and modulation

FOUR STABILITY CRITRIA

- 1. Stabilization of arbitrarily small islands ($w \ll w_{cd}$)
- 2. Limitation of growing island size to w $^{\underline{a}}$ w_{cd} .
 - a) Δ' independent of current drive
 - b) Current drive layer changes Δ'
- 3. Complete stabilization of NTMs in present devices
- 4. Reduction of already-established saturated islands to w^a w_{cd}
 - $w_{sat} \gg w_{cd}$ assumed

STABILIZATION OF SMALL ISLANDS

1. Results for $K_1(x, \tau)$ show that it has a finite value for $x \rightarrow 0$, assuming a modulated source.

Fig. 4. K1 versus "on"-time τ for the various island widths w_{cd} /w marked on the diagram.

- Maximum value of $K_1(0,\tau)$ is $K_1 = 0.65$ with 50% "on" 50% "off"
- Stabilization will occur when $\Lambda = j_{cd}/j_{bs} > 1.6$

ISLAND EVOLUTION WITH NO MODULATION

1. Evaluate $K_1(x,1)$ with no modulation and represent by analytic fit. $(\pm 5\%)$

$$K_1(x,1) = \frac{x}{1 + \left(\frac{2}{3}\right)x^2}$$

• Correct power series and asymptotic forms

Fig. 5. K1 versus island width, for unmodulated ECCD ($\tau = 1.0$).

NONDIMENSIONAL ISLAND EQUATION

• Non dimensional island evolution equation with $X = (w_{sat}/w_{cd}) >> 1$.

$$\frac{\mathrm{dx}}{\mathrm{dT}} = -1 + X \left(\frac{1}{X} \left(1 - \left(\frac{X_o}{X} \right)^2 \right) - \frac{\Lambda}{1 + \left(\frac{2}{3} \right) x^2} \right)$$

- Usual saturated island is given by x=X.
- New roots possible when coefficient of X vanishes (ignoring x₀).

$$x = 0.75 \left(\Lambda \pm \sqrt{\Lambda^2 - (8/3)} \right)$$

• Criterion for two roots is $\Lambda > \sqrt{8/3} = 1.63$ when $x_0 << 1$

NEW ROOTS LIMIT ISLAND GROWTH

- No Modulation
- No current drive effect on Δ'
- No polarization stabilization

ullet Current drive reduces saturated Island Size; (use asymptotic form for K_1).

$$x = 0.5 \{ X \pm (X^2 - 6 \Lambda X)^{1/2} \}$$

• Criterion for elimination of saturated islands $\Lambda > X/6$; $I_{cd} > 0.23 I_{bs}$

POLARIZATION STABILIZATION COMPLETELY SUPRESSES MODE

• Suppression criterion: $\Lambda > 1.3$ for ASDEX/DIII-D and is sensitive to x_o .

$$\Lambda > \frac{1}{3\sqrt{3}x_o}$$
 (with Δ') $\Lambda > \frac{2}{3\sqrt{3}x_o}$ (without Δ')

• Supression criterion has unfavorable scaling with ρ^*

EFFECT OF CURRENT DRIVE LAYER ON Δ'

• Current Drive Layer centered on rational surface

$$(-\Delta')_{cd} = (-\Delta'_{o}) X \Lambda$$

$$\frac{dx}{dT} = -1 + X \left\{ \frac{1}{x} - \Lambda \frac{2 + \left(\frac{2}{3}\right) x^{2}}{1 + \left(\frac{2}{3}\right) x^{2}} \right\}$$

• Only one real root; growth to saturated level is prohibited

• Island size limited to $w < w_{cd}$ when $\Lambda > 0.6$.

POLARIZATION DRIFT PLUS Δ' ELIMINATES NTMs IN PRESENT FACILITIES FOR MODEST CURRENT DRIVE

- Suppression criterion $\Lambda > 0.5$ in ASDEX/DIII-D
- Polarization stabilization ineffective in an ITER-class device

APPLICATION TO ITER FEAT

- ECCD maximized by off-axis launch location
- For ITER FEAT with 20 MW ECCD; $j_{bs} \stackrel{a}{=} 0.07 \text{ MA/m}^2$ $j_{cd} = 0.1 \text{ MA/m}^2$
- Wide range of gyrotron frequencies work; above midplane lauch location

155 Ghz (red), 170 (green), 190 (blue) Dashed= bootstrap

EFFECT OF Δ' IS NOT DELAYED (MUCH) BY BACK EMF.

1. Back-emf analysis for abrupt initiation of current drive carried out for contribution to island evolution equation

$$\frac{dx}{d\tau} = \left[\frac{j_{bs}}{j_q \, \widehat{s}}\right] \left\{ -\frac{1}{X} + \frac{1}{x} - \Lambda \left(\frac{1}{1 + \left(\frac{2}{3}\right) x^2} + \frac{\tau - \tau_o}{1 + \tau - \tau_o}\right) \right\}$$

$$j_q = 2B / (R \mu_o q)$$

- 2. Factor in [..] brackets is generally less than unity
 - •Evolution of NTM slow compared to development of Δ'

PHYSICS CONCLUSIONS

- 1. Correct Figure-of-Merit for ECCD stabilization of Neoclassical Tearing Modes is $\Lambda = j_{cd}/j_{bs}$
 - $\Lambda > 1.3$ reduces island size to driven current layer thickness (no Δ') $\Lambda > 0.6$ (with Δ')
 - $\Lambda > 1.6$ (with modulation) completely stabilizes modes
- 2. Polarization stabilization completely suppresses NTMs in present devices but appears unimportant for ITER-FEAT. Do other stabilizing effects exist?
- 3. Island sizes comparable to current drive width expected for continuous ECCD in ITER-FEAT.
 - Modulation will still supress all islands for $j_{cd} > 1.6 j_{bs}$
 - Retain modulation capability in ITER-FEAT design.