Poster: GP1.119

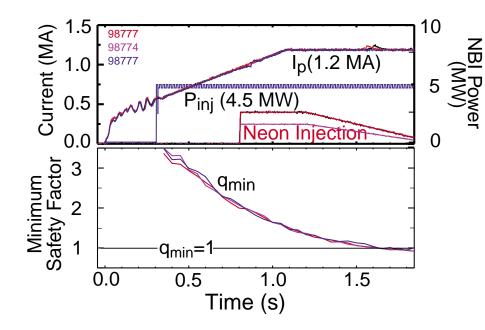
MECHANISMS FOR REDUCTION OF ION TRANSPORT AND TURBULENCE WITH IMPURITY INJECTION IN DIII-D

M. Murakami,¹ G.L.Jackson,² G.R. McKee,³ G.M. Staebler,² D.R. Ernst,⁴ T.E. Evans,² J.E. Kinsey,⁵ C.L. Rettig,⁶ D.W. Ross,⁷ H.E. St John,² D.A. Alexander,⁸ D.R. Baker,² G. Bateman,⁵ L.R. Baylor,¹ J.A. Boedo,⁹ N.H. Brooks,² K.H. Burrell,² J.R. Cary,^{8,10} R.H. Cohen,¹⁰ J.C. DeBoo,² R.J. Colchin,¹ E.J. Doyle⁶ C. Fenzi,³ C.M. Greenfield,² D.E. Greenwood,¹ R.J. Groebner,² J.T. Hogan,¹ W.A. Houlberg,¹ A.W. Hyatt,² R.J. La Haye,² T.C. Jernigan,¹ R.A. Jong,¹¹ A.H. Kritz,⁵ L.L. Lao,² C.J. Lasnier,¹¹ M.A. Makowski,¹¹ A. Messiaen,¹² J. Mandrekas,¹³ R.A. Moyer,⁹ J. Ongena,¹³ T.W. Petrie,² A. Pankin,⁵ B.W. Rice,¹¹ T.L. Rhodes,⁶ J.C. Rost,¹⁴ S. Shasharina,⁸ W.M. Stacey,¹³ P.I. Strand,¹ R.D. Sydora,¹⁵ T.S. Taylor,² D.M. Thomas,² M.R. Wade,¹ R.E. Waltz,² W.P. West,² K.L. Wong,⁴ L. Zeng,⁶ and the DIII-D Team

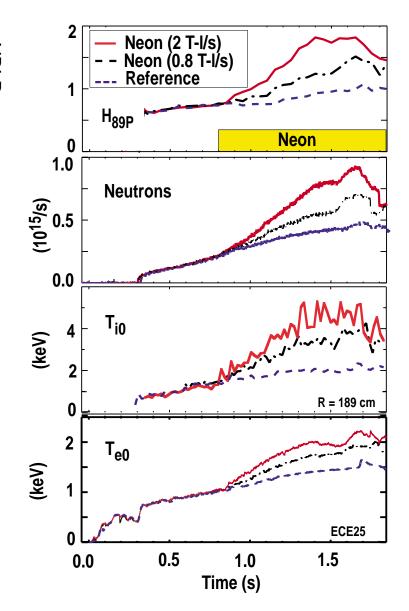
¹Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, USA ²General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA ³University of Wisconsin, Madison, Wisconsin 53706, USA ⁴Princeton Plasma Physics laboratory, Princeton, New Jersey 08543 ⁵Lehigh University, Bethlehem, Pennsylvania 18015, USA ⁶University of California, Los Angeles, California 90095, USA ⁷University of Texas, Austin, Texas 78712, USA ⁸Tech-X Corporation, Denver, Colorado 80301, USA ⁹University of California, San Diego, California 92093, USA ¹⁰University of Colorado, Boulder, Colorado 80309-0390, USA ¹¹Lawrence Livermore National Laboratory, Livermore, California 94550, USA ¹²KMS/ERM, Brussels, Belgium ¹³Georgia Institute of Technology, Atlanta, Georgia 30332, USA ¹⁴Massachussetts Institute of Technology, Cambridge, Massachusetts ¹⁵University of Alberta, Edmonton, AB T6G2J1, Canada The 42nd Annual Meeting of DPP-APS and the 10th International

Congress on Plasma Physics, Quebec City, Canada

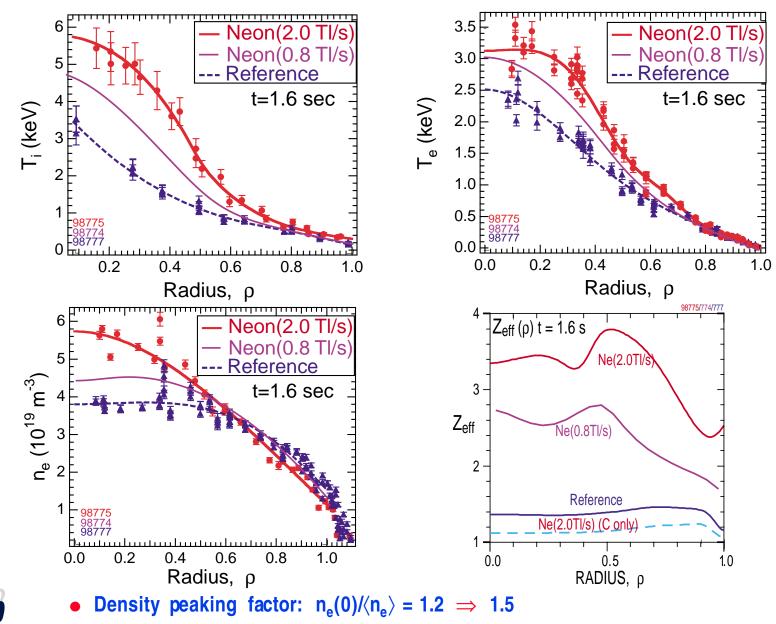
October 24, 2000



INTRODUCTION

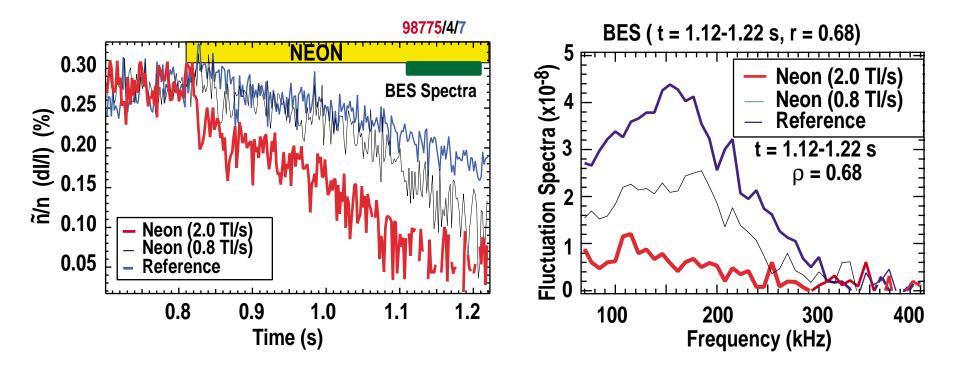

- Confinement improvement in discharges with impurity seeding have been observed in a number of tokamaks:
 - ISX-B (Z-mode)
 - TEXTOR-94 (RI-mode)
 - TFTR, ASDEX, DIII-D, JET, ...
- In the present DIII-D experiment, injection of noble gas (Ne,Ar, Kr) into L-mode edge discharges has produced:
 - Clear confinement improvement (×2)
 - Transport reduction in all transport channels (χ_i by \times 5)
 - Simultaneous reduction in long-wavelength turbulence
- These observations provide opportunities to test understanding of theory-based transport models
 - Gyro-kinetic analysis
 - ⇒ Synergistic effects of impurity-induced reduction of toroidal drift wave turbulence and ExB shearing suppression
 - Theory-based transport modeling (GLF23)
- Impurity seeding is also a useful tool for:
 - Reduction of heat flux to plasma facing components
 - L-mode edge with improved confinement
 - Internal Transport Barrier control

— H-mode edge stability control



- USN with L-mode edge
- Early NBI \Rightarrow q_{min}>1 to avoid sawtooth
- Ne, Ar, Kr (recycling gas) injected at 0.8 s and 1.2 s, quantity varied
- Run reference discharges with similar control parameters except no impurity puffed

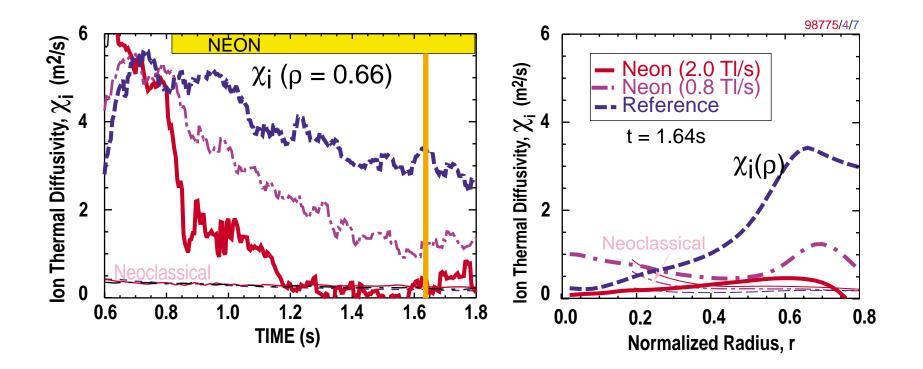
NEON INJECTION PRODUCES HIGHER AND BROADER T_i AND T_e PROFILES, <u>AND MORE PEAKED DENSITY PROFILES</u>



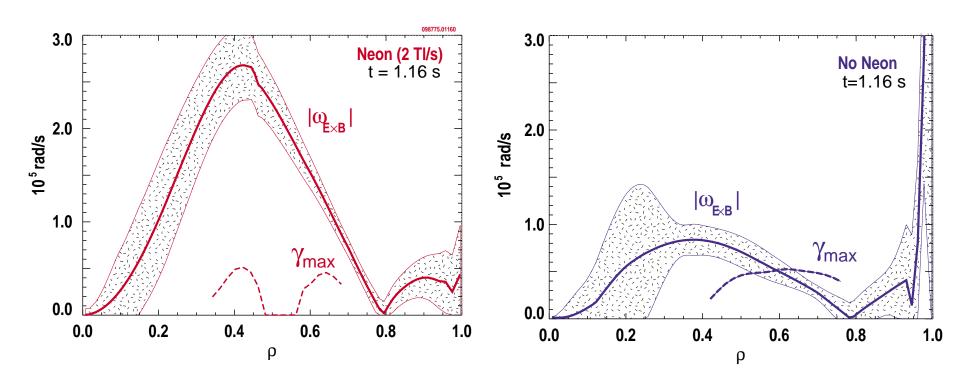
• Charge Exchange Recombination spectroscopy, showing n_{Ne}/n_e < 2.2% ^{4MM-APS00}

SAN DIEG

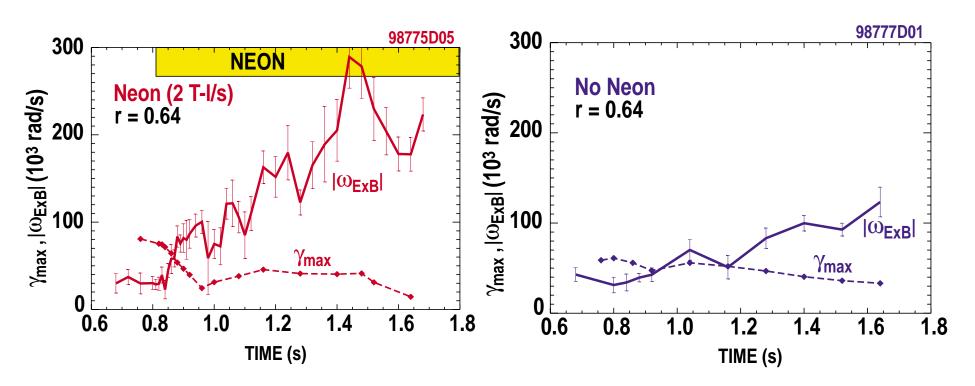
CONFINEMENT IMPROVEMENT IS CORRELATED WITH STRONG REDUCTION OF TURBULENCE WITH IMPURITY INJECTION


• BES measures density fluctuations (k_{\theta}\rho_{s} < 0.6) at ρ = 0.68

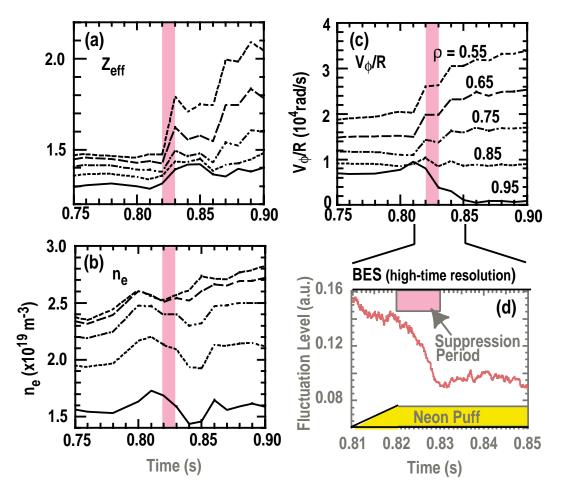
- Reduction of turbulence is also observed by FIR scattering
- Reciprocating probe observed reduction of particle flux $\Gamma \sim \langle \tilde{n\phi} \rangle$ at edge


TRANSP ANALYSIS SHOWS THAT ION THERMAL DIFFUSIVITY DECREASES STRONGLY WITH NEON INJECTION

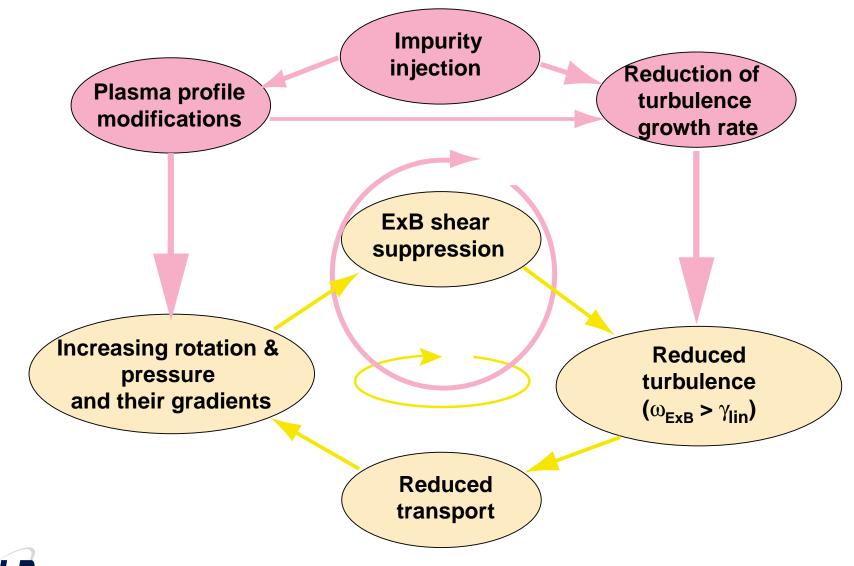
• $\chi_i(\rho)$ is reduced throughout the profile to the neoclassical level


NEON INJECTION REDUCES TURBULENCE GROWTH RATES AND INCREASES EXB SHEARING RATE

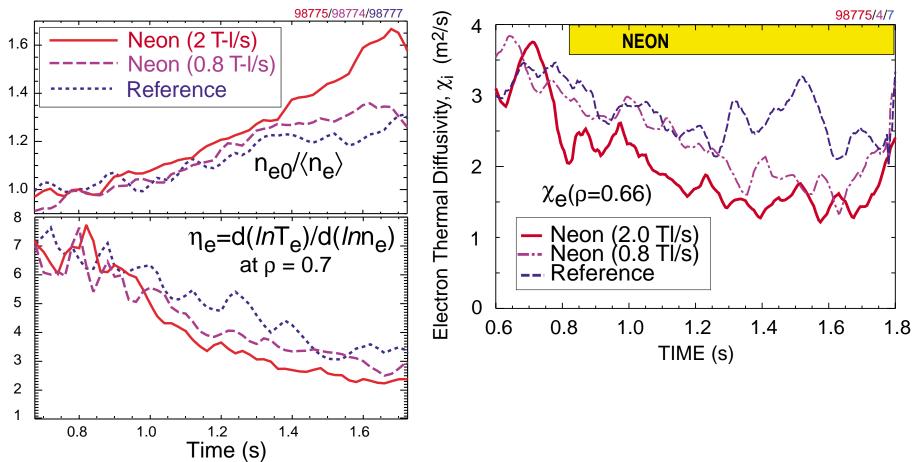
- Gyro-Kinetic Stability (GKS) code is used to calculate linear growth rates based on experimental profiles
- ⇒ Growth rates (primarily ITG) reduced by main ion dilution, direct mode stabilization with impurities and profile effects
- ExB shearing rate is calculated from radial electric field based on measured V_{_{\!\varphi}}, V_{_{\!\theta}}, and p_{_{\!i}} of carbon impurity
- Criteria for stabilization: $|\omega_{ExB}| > \gamma_{max}$


NEON INJECTION REDUCES TURBULENCE GROWTH RATES AND INCREASES ExB SHEARING RATE

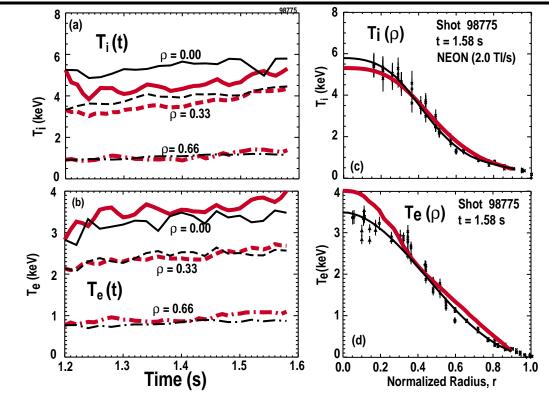
- Gyro-Kinetic Stability (GKS) code is used to calculate linear growth rates based on experimental profiles
- ⇒ Growth rates (primarily ITG) reduced by main ion dilution, direct mode stabilization with impurities and profile effects
- ExB shearing rate is calculated from radial electric field based on measured V_{_{\!\varphi}}, V_{_{\!\theta}}, and p_{_{\!i}} of carbon impurity
- Criteria for stabilization: $|\omega_{ExB}| > \gamma_{max}$


PROMPT LOCAL TRANSPORT REDUCTION AND LOW-k TURBULENCE SUPPRESSION RESULTS FROM AN INCREASING ROTATION GRADIENT ENHANCING THE EXB SHEARING

- Some density peaking \Rightarrow Only modest effect on γ_{max}
- Rapid change in $V_{\phi} \Rightarrow$ Increase in $\nabla V_{\phi} \Rightarrow$ Increase in $\omega_{ExB} \Rightarrow$ reduce low-k fluctuations

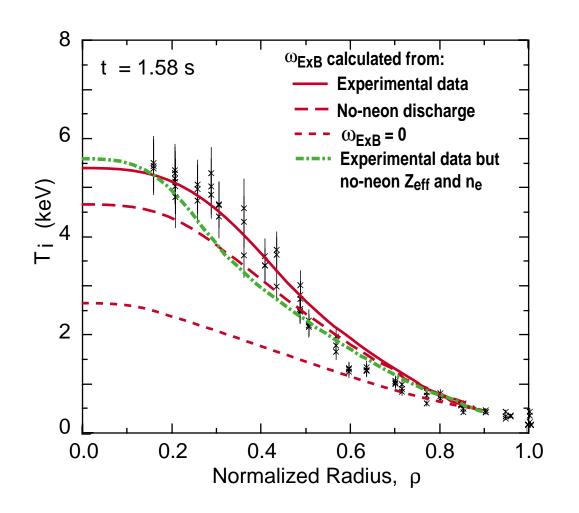


DIRECT IMPURITY EFFECTS ACT SYNERGISTICALLY WITH THE EXB SHEARING SUPPRESSION


PLASMA PROFILES ALSO EVOLVE, HELPING TURBULENCE STABILIZATION

- Can we separate these three effects?
 - Direct impurity effects for γ_{max}
 - ExB shear suppression
 - Other profile evolutions

ROLES OF DIRECT IMPURITY EFFECTS AND ExB SHEAR SUPPRESSION ARE EXPLORED WITH A THEORY-BASED TRANSPORT MODEL



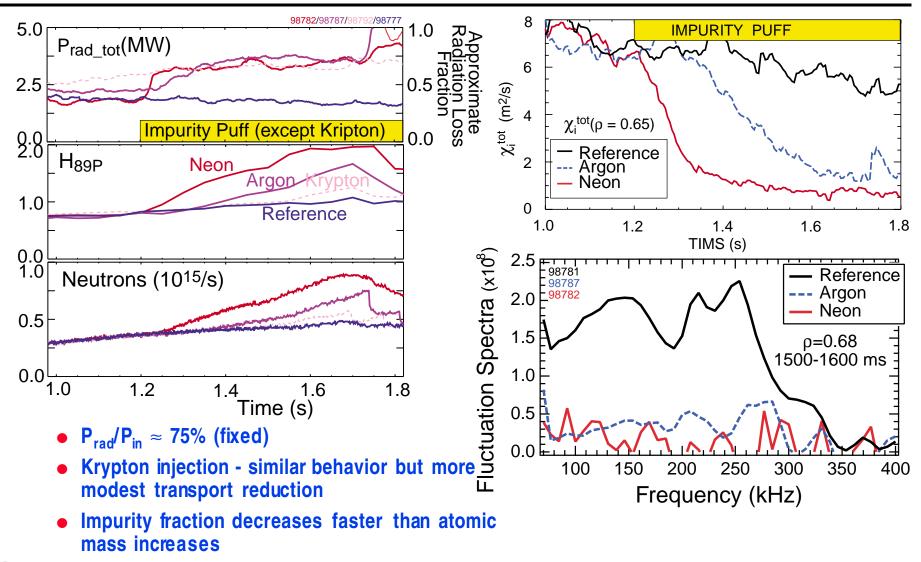
- Gyro-Landau Fluid (GLF23) model allows to study both effects on transport [R. Waltz et al.: Phys. Plasmas '97]
- The GLF23 model was carried out using a time-dependent transport code, NTCC Demo code
- The National Transport Code Collaboration (NTCC) project is to develop:
 - Library of transport code modules
 - Web-invokable data server and demonstration code
- DIII-D Neon shots have been selected as the principal test case for the NTCC Demonstration Code
- The code solved T_i and T_e equations with inputs of:
 - $n_e(\rho,t)$ and $V_{\phi}(\rho,t)$
 - Time-dependent sources, sinks, and equilibria from TRANSP

INCREASE IN EXB SHEARING RATE IS A NECESSARY CONDITION FOR CONFINEMENT IMPROVEMENT

Simulations are used to test:

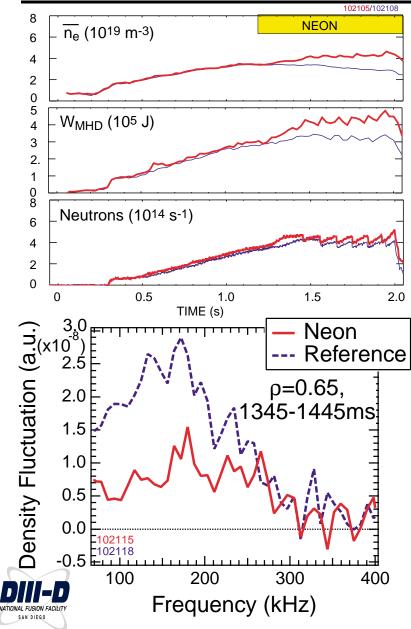
- Effects of ExB shearing from experimental ω_{ExB} to 0
- Effects of changing Z_{eff} (3.2 \rightarrow 1.4) and $n_e(\rho)$ after the improved state is established
- ⇒ Neon injection may be used as a trigger

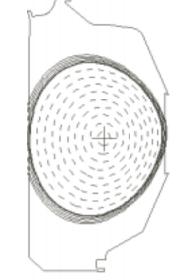
ADDITIONAL EXPERIMENTS WITH SEVERAL DIFFERENT CONFIGURATIONS EXTENDED OUR UNDERSTANDING OF THE MECHANISMS


- High-k fluctuation/electron transport correlation
 - FIR high-k fluctuation measurement:
 - Bursting fluctuations with neon injection and correlation of the average fluctuation levels with χ_e
 - Uncertainty of the fluctuation source exists because of the lack of a large E×B Doppler shift in the fluctuation spectrum

• Divertor pumping effects

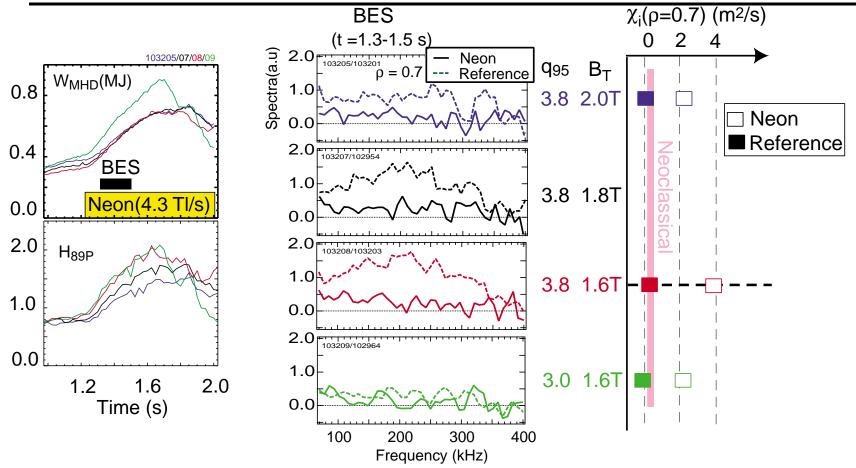
- Initial experiments with a divertor pumping geometry at higher $B_T(2.0 T) \Rightarrow$ Smaller improvement than that at lower $B_T(1.6T)$
 - Lower neon content found in the core
 - Larger neon puff and reduced neon pumping geometry have produced $\tau_{\rm F}$ as good as that at 1.6 T
- Impurity species (Ne, Ar, Kr) scan
 - Ar and Kr injection can improve the confinement, but Ne is still the best
 - Radiative loss fraction limit precludes mass density increase for stabilization with higher Z under DIII-D conditions
- Neon injection into a circular, inner-limited discharge
- q-scan / B_T scan at constant (\approx maximum) neon injection


ARGON AND KRYPTON INJECTION CAN ALSO IMPROVE CONFINEMENT, BUT PLASMA RESPONCE IS SLOWER THAN NEON



- Neon is best theoretically

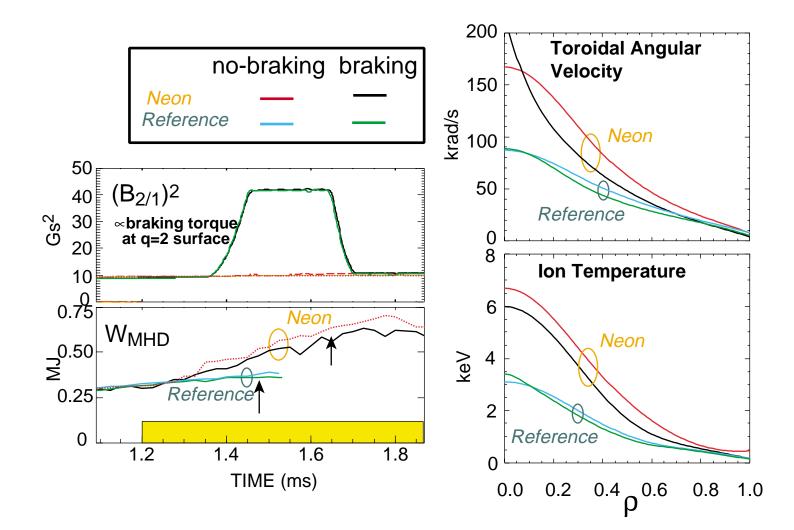
NEON INJECTION INTO A CIRCULAR, INNER-WALL LIMITED DISCHARGE EXHIBITS SAME FEATURE AS THAT IN A DIVERTED DISCHARGE, IMPLYING THE SAME PHYSICAL MECHANISM IS AT WORK



- Improvement persists during sawtooth phase
- The turbulence suppression mechanism (reduced γ_{max} and increased ω_{ExB}) appears to be at work:

	Neon	Reference
γ_{max}	0.19	0.43
ω_{ExB}	0.57	0.51

- Density peaking factor with neon is even lower than no neon
- ⇒ Density peaking is not a necessary condition for confinement improvement


STRONG NEON INJECTION REDUCES BOTH LONG-WAVELENGTH TURBULENCE AND ION TRANSPORT TO THE MINIMUM LEVELS

- B_T and q_{95} scans with injection of a fixed (~maximum) quantity of neon
- χ_i with strong neon injection reaches neoclassical levels almost regardless the initial conditions
- Reduction of the fluctuation reaches near diagnostic detection level
 - The overall performance with neon is determined by other parameters

MAGNETIC BRAKING EXPERIMENT SHOWED AN IMPORTANT ROLE OF EXB SHEARING IN IMPROVED CONFINEMENT WITH NEON INJECTION

NATIONAL FUSION FACILITY SAN DIEGO

[D.R. Ernst: MO1.9]

18MM-APS00

CONCLUSIONS

- External impurity injection in L-mode edge discharges in DIII-D produced:
 - Clear confinement improvement ($\times 2$ in τ_{E} , and S_{n})
 - Reduction in all transport channels (χ_i to neoclassical)
 - Simultaneous reduction of long-wavelength turbulence
- Reduction in fluctuations and ion thermal transport is attributed to two impurity-induced effects working synergistically: reduction of toroidal drift wave turbulence and ExB shear suppression
- Impurity injection is observed to trigger reduction of long-wavelength turbulence by increasing the gradient of toroidal rotation which enhances ExB flow shear
- Time-dependent simulations with GLF23 model show the dominant role of ExB shearing and a
 possibility of using impurity injection as a trigger
 - Remove impurity source after obtaining confinement improvement
- Impurity species scan shows the neon producing the largest effect
- Neon injection into a circular, inner-limited discharge show similar characteristics, indicating common physics mechanisms with the above
- B_T and q scan with neon injection, showing ion transport approaching the neoclassical level
- Theory-based transport simulations (GLF23) and a magnetic braking experiment show the important role of E×B shearing suppression

