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INTRODUCTION
! Confinement improvement in discharges with impurity seeding have been observed in a

number of tokamaks:
— ISX-B (Z-mode)
— TEXTOR-94 (RI-mode)
— TFTR, ASDEX, DIII-D, JET, ...

! In the present DIII-D experiment, injection of noble gas (Ne,Ar, Kr) into L-mode edge
discharges has produced:

— Clear confinement improvement (×2)
— Transport reduction in all transport channels (χi by ×5)
— Simultaneous reduction in long-wavelength turbulence

! These observations provide opportunities to test understanding of theory-based transport
models

— Gyro-kinetic analysis

⇒  Synergistic effects of impurity-induced reduction of toroidal drift wave turbulence and ExB
shearing suppression

— Theory-based transport modeling (GLF23)
! Impurity seeding is also a useful tool for:

— Reduction of heat flux to plasma facing components
— L-mode edge with improved confinement
— Internal Transport Barrier control
— H-mode edge stability control
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IMPURITY INJECTION SIGNIFICANTLY IMPROVES CONFINEMENT PARAMETERS

! USN with L-mode edge
! Early NBI ⇒  qmin>1 to avoid sawtooth
! Ne, Ar, Kr (recycling gas) injected at

0.8 s and 1.2 s, quantity varied
! Run reference discharges with similar

control parameters except no impurity
puffed
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NEON INJECTION PRODUCES HIGHER AND BROADER Ti AND Te PROFILES,
AND MORE PEAKED DENSITY PROFILES

! Density peaking factor:  ne(0)/〈ne〉  = 1.2  ⇒   1.5
! Charge Exchange Recombination spectroscopy, showing nNe/ne < 2.2%
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CONFINEMENT IMPROVEMENT IS CORRELATED WITH STRONG REDUCTION
OF TURBULENCE WITH IMPURITY INJECTION

! BES measures density fluctuations (kθρs < 0.6) at ρ = 0.68

! Reduction of turbulence is also observed by FIR scattering
! Reciprocating probe observed reduction of particle flux Γ  ~ 〈nφ〉 at edge
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! χ i(ρ) is reduced throughout the profile to the neoclassical level

TRANSP ANALYSIS SHOWS THAT ION THERMAL DIFFUSIVITY
DECREASES STRONGLY WITH NEON INJECTION
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NEON INJECTION REDUCES TURBULENCE GROWTH RATES AND INCREASES
ExB SHEARING RATE

! Gyro-Kinetic Stability (GKS) code is used to calculate linear growth rates based on
experimental profiles

⇒  Growth rates (primarily ITG) reduced by main ion dilution, direct mode stabilization
with impurities and profile effects

! ExB shearing rate is calculated from radial electric field based on measured Vφ,
Vθ, and pi of carbon impurity

! Criteria for stabilization: |ωExB| > γmax
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NEON INJECTION REDUCES TURBULENCE GROWTH RATES AND INCREASES
ExB SHEARING RATE

! Gyro-Kinetic Stability (GKS) code is used to calculate linear growth rates based on
experimental profiles

⇒  Growth rates (primarily ITG) reduced by main ion dilution, direct mode stabilization
with impurities and profile effects

! ExB shearing rate is calculated from radial electric field based on measured Vφ,
Vθ, and pi of carbon impurity

! Criteria for stabilization: |ωExB| > γmax
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PROMPT LOCAL TRANSPORT REDUCTION AND LOW-k TURBULENCE
SUPPRESSION RESULTS FROM AN INCREASING ROTATION GRADIENT

ENHANCING THE ExB SHEARING

! Some density peaking ⇒  Only modest effect on γmax

! Rapid change in Vφ ⇒  Increase in ∇ Vφ ⇒   Increase in ωExB 

 ⇒  reduce low-k fluctuations
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DIRECT IMPURITY EFFECTS ACT SYNERGISTICALLY WITH THE ExB
SHEARING SUPPRESSION
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(ωExB > γlin)
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and their gradients
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PLASMA PROFILES ALSO EVOLVE, HELPING
 TURBULENCE STABILIZATION

! Can we separate these three effects?
— Direct impurity effects for γmax

— ExB shear suppression
— Other profile evolutions
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ROLES OF DIRECT IMPURITY EFFECTS AND ExB SHEAR SUPPRESSION ARE
EXPLORED WITH A THEORY-BASED TRANSPORT MODEL

! Gyro-Landau Fluid (GLF23) model allows to study both effects on transport [R. Waltz et al.: Phys. Plasmas ‘97]
! The GLF23 model was carried out using a time-dependent transport code, NTCC Demo code
! The National Transport Code Collaboration (NTCC) project is to develop:

— Library of transport code modules
— Web-invokable data server and demonstration code

! DIII-D Neon shots have been selected as the principal test case for the NTCC Demonstration Code
! The code solved Ti and Te equations with inputs of:

— ne(ρ,t) and Vφ(ρ.t)
— Time-dependent sources, sinks, and equilibria from TRANSP
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INCREASE IN ExB SHEARING RATE IS A NECESSARY CONDITION FOR
CONFINEMENT IMPROVEMENT

Simulations are used to test:

! Effects of ExB shearing from
experimental ωExB to 0

! Effects of changing Zeff (3.2
→ 1.4) and ne(ρ) after the
improved state is established

⇒  Neon injection may be used
as a trigger
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ADDITIONAL EXPERIMENTS WITH SEVERAL DIFFERENT CONFIGURATIONS
EXTENDED OUR UNDERSTANDING OF THE MECHANISMS

! High-k fluctuation/electron transport correlation
— FIR high-k fluctuation measurement:

! Bursting fluctuations with neon injection and correlation of the average fluctuation levels with χe

! Uncertainty of the fluctuation source exists because of the lack of a large E×B Doppler shift in
the fluctuation spectrum

! Divertor pumping effects
— Initial experiments with a divertor pumping geometry at higher BT (2.0 T)  ⇒  Smaller improvement

than that at lower BT (1.6T)

! Lower neon content found in the core

! Larger neon puff and reduced neon pumping geometry have produced τE as good as that at 1.6 T

! Impurity species (Ne, Ar, Kr) scan
— Ar and Kr injection can improve the confinement, but Ne is still the best
— Radiative loss fraction limit precludes mass density increase for stabilization with higher Z under

DIII-D conditions

! Neon injection into a circular, inner-limited discharge

! q-scan / BT scan at constant (≈ maximum) neon injection
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ARGON AND KRYPTON INJECTION CAN ALSO IMPROVE CONFINEMENT, BUT
PLASMA RESPONCE IS SLOWER THAN NEON

! Prad/Pin ≈ 75% (fixed)
! Krypton injection - similar behavior but more

modest transport reduction
! Impurity fraction decreases faster than atomic

mass increases
— Neon is best theoretically
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! Improvement persists during sawtooth phase
! The turbulence suppression mechanism

(reduced γmax and increased ωExB) appears to
be at work:

              Neon     Reference
     γmax       0.19          0.43
     ωExB      0.57          0.51

! Density peaking factor with neon is even
lower than no neon

⇒  Density peaking is not a necessary condition
for confinement improvement

NEON INJECTION INTO A CIRCULAR, INNER-WALL LIMITED DISCHARGE
EXHIBITS SAME FEATURE AS THAT IN A DIVERTED DISCHARGE, IMPLYING

THE SAME PHYSICAL MECHANISM IS AT WORK
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STRONG NEON INJECTION REDUCES BOTH LONG-WAVELENGTH
TURBULENCE AND ION TRANSPORT TO THE MINIMUM LEVELS

! BT and q95 scans with injection of a fixed (~maximum) quantity of neon
! χi with strong neon injection reaches neoclassical levels almost regardless the initial conditions
! Reduction of the fluctuation reaches near diagnostic detection level
! The overall performance with neon is determined by other parameters
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MAGNETIC BRAKING EXPERIMENT SHOWED AN IMPORTANT ROLE OF
ExB SHEARING IN IMPROVED CONFINEMENT WITH NEON INJECTION
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! External impurity injection in L–mode edge discharges in DIII–D produced:
— Clear confinement improvement (×2 in τE, and Sn)
— Reduction in all transport channels (χi to neoclassical)

— Simultaneous reduction of long-wavelength turbulence
! Reduction in fluctuations and ion thermal transport is attributed to two impurity-induced effects

working synergistically: reduction of toroidal drift wave turbulence and ExB shear suppression
! Impurity injection is observed to trigger reduction of long-wavelength turbulence by increasing the

gradient of toroidal rotation which enhances ExB flow shear
! Time-dependent simulations with GLF23 model show the dominant role of ExB shearing and a

possibility of  using impurity injection as a trigger
— Remove impurity source after obtaining confinement improvement

! Impurity species scan shows the neon producing the largest effect
! Neon injection into a circular, inner-limited discharge show similar characteristics, indicating

common physics mechanisms with the above
! BT and q scan with neon injection, showing ion transport approaching the neoclassical level
! Theory-based transport simulations (GLF23) and a magnetic braking experiment show the

important role of E×B shearing suppression

CONCLUSIONS


