MECHANISMS FOR REDUCTION OF ION TRANSPORT AND TURBULENCE WITH IMPURITY INJECTION IN DIII-D

1Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, USA
2General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
3University of Wisconsin, Madison, Wisconsin 53706, USA
4Princeton Plasma Physics laboratory, Princeton, New Jersey 08543
5Lehigh University, Bethlehem, Pennsylvania 18015, USA
6University of California, Los Angeles, California 90095, USA
7University of Texas, Austin, Texas 78712, USA
8Tech-X Corporation, Denver, Colorado 80301, USA
9University of California, San Diego, California 92093, USA
10University of Colorado, Boulder, Colorado 80309-0390, USA
11Lawrence Livermore National Laboratory, Livermore, California 94550, USA
12KMS/ERM, Brussels, Belgium
13Georgia Institute of Technology, Atlanta, Georgia 30332, USA
14Massachusetts Institute of Technology, Cambridge, Massachusetts
15University of Alberta, Edmonton, AB T6G2J1, Canada

The 42nd Annual Meeting of DPP-APS and the 10th International Congress on Plasma Physics, Quebec City, Canada
October 24, 2000
INTRODUCTION

- Confinement improvement in discharges with impurity seeding have been observed in a number of tokamaks:
 - ISX-B (Z-mode)
 - TEXTOR-94 (RI-mode)
 - TFTR, ASDEX, DIII-D, JET, ...

- In the present DIII-D experiment, injection of noble gas (Ne, Ar, Kr) into L-mode edge discharges has produced:
 - Clear confinement improvement ($\times 2$)
 - Transport reduction in all transport channels (χ_i by $\times 5$)
 - Simultaneous reduction in long-wavelength turbulence

- These observations provide opportunities to test understanding of theory-based transport models
 - Gyro-kinetic analysis
 \Rightarrow Synergistic effects of impurity-induced reduction of toroidal drift wave turbulence and ExB shearing suppression
 - Theory-based transport modeling (GLF23)

- Impurity seeding is also a useful tool for:
 - Reduction of heat flux to plasma facing components
 - L-mode edge with improved confinement
 - Internal Transport Barrier control
 - H-mode edge stability control
IMPURITY INJECTION SIGNIFICANTLY IMPROVES CONFINEMENT PARAMETERS

- USN with L-mode edge
- Early NBI $\Rightarrow q_{\text{min}}>1$ to avoid sawtooth
- Ne, Ar, Kr (recycling gas) injected at 0.8 s and 1.2 s, quantity varied
- Run reference discharges with similar control parameters except no impurity puffed
NEON INJECTION PRODUCES HIGHER AND BROADER T_i AND T_e PROFILES, AND MORE PEAKED DENSITY PROFILES

- Density peaking factor: $n_e(0)/\langle n_e \rangle = 1.2 \Rightarrow 1.5$
- Charge Exchange Recombination spectroscopy, showing $n_{Ne}/n_e < 2.2\%$
CONFINEMENT IMPROVEMENT IS CORRELATED WITH STRONG REDUCTION OF TURBULENCE WITH IMPURITY INJECTION

- BES measures density fluctuations \((k_0 \rho_s < 0.6) \) at \(\rho = 0.68 \)

- Reduction of turbulence is also observed by FIR scattering
- Reciprocating probe observed reduction of particle flux \(\Gamma \sim \langle \tilde{n}\phi \rangle \) at edge
TRANSP ANALYSIS SHOWS THAT ION THERMAL DIFFUSIVITY DECREASES STRONGLY WITH NEON INJECTION

\[\chi_i(\rho = 0.66) \]

- \(\chi_i(\rho) \) is reduced throughout the profile to the neoclassical level
NEON INJECTION REDUCES TURBULENCE GROWTH RATES AND INCREASES ExB SHEARING RATE

- Gyro-Kinetic Stability (GKS) code is used to calculate linear growth rates based on experimental profiles.
 \[\gamma_{\text{max}} < |\omega_{E \times B}| \]

- Growth rates (primarily ITG) reduced by main ion dilution, direct mode stabilization with impurities and profile effects.

- ExB shearing rate is calculated from radial electric field based on measured \(V_{\phi} \), \(V_\theta \), and \(\rho \) of carbon impurity.

- Criteria for stabilization: \(|\omega_{E \times B}| > \gamma_{\text{max}} \)
NEON INJECTION REDUCES TURBULENCE GROWTH RATES AND INCREASES ExB SHEARING RATE

- Gyro-Kinetic Stability (GKS) code is used to calculate linear growth rates based on experimental profiles
 - Growth rates (primarily ITG) reduced by main ion dilution, direct mode stabilization with impurities and profile effects
- ExB shearing rate is calculated from radial electric field based on measured V_ϕ, V_θ, and p_i of carbon impurity
- Criteria for stabilization: $|\omega_{ExB}| > \gamma_{\text{max}}$
PROMPT LOCAL TRANSPORT REDUCTION AND LOW-k TURBULENCE SUPPRESSION RESULTS FROM AN INCREASING ROTATION GRADIENT ENHANCING THE ExB SHEARING

- Some density peaking ⇒ Only modest effect on γ_{max}
- Rapid change in V_ϕ ⇒ Increase in ∇V_ϕ ⇒ Increase in ω_{ExB} ⇒ reduce low-k fluctuations
DIRECT IMPURITY EFFECTS ACT SYNERGISTICALLY WITH THE ExB SHEARING SUPPRESSION

Impurity injection

Reduction of turbulence growth rate

ExB shear suppression

Reduced turbulence \((\omega_{\text{ExB}} > \gamma_{\text{lin}}) \)

Reduced transport

Increasing rotation & pressure and their gradients

Plasma profile modifications

Reduced turbulence growth rate

PLASMA PROFILES ALSO EVOLVE, HELPING TURBULENCE STABILIZATION

- Can we separate these three effects?
 - Direct impurity effects for γ_{max}
 - ExB shear suppression
 - Other profile evolutions
ROLES OF DIRECT IMPURITY EFFECTS AND ExB SHEAR SUPPRESSION ARE EXPLORED WITH A THEORY-BASED TRANSPORT MODEL

- Gyro-Landau Fluid (GLF23) model allows to study both effects on transport [R. Waltz et al.: Phys. Plasmas ‘97]
- The GLF23 model was carried out using a time-dependent transport code, NTCC Demo code
- The National Transport Code Collaboration (NTCC) project is to develop:
 - Library of transport code modules
 - Web-invokable data server and demonstration code
- DIII-D Neon shots have been selected as the principal test case for the NTCC Demonstration Code
- The code solved Ti and Te equations with inputs of:
 - \(n_e(\rho,t) \) and \(V_\phi(\rho,t) \)
 - Time-dependent sources, sinks, and equilibria from TRANSPI
INCREASE IN ExB SHEARING RATE IS A NECESSARY CONDITION FOR CONFINEMENT IMPROVEMENT

Simulations are used to test:

- Effects of ExB shearing from experimental ω_{ExB} to 0
- Effects of changing Z_{eff} (3.2 → 1.4) and $n_e(\rho)$ after the improved state is established

\Rightarrow Neon injection may be used as a trigger
ADDITIONAL EXPERIMENTS WITH SEVERAL DIFFERENT CONFIGURATIONS EXTENDED OUR UNDERSTANDING OF THE MECHANISMS

- **High-k fluctuation/electron transport correlation**
 - FIR high-k fluctuation measurement:
 - Bursting fluctuations with neon injection and correlation of the average fluctuation levels with χ_e
 - Uncertainty of the fluctuation source exists because of the lack of a large $E \times B$ Doppler shift in the fluctuation spectrum

- **Divertor pumping effects**
 - Initial experiments with a divertor pumping geometry at higher B_T (2.0 T) \Rightarrow Smaller improvement than that at lower B_T (1.6T)
 - Lower neon content found in the core
 - Larger neon puff and reduced neon pumping geometry have produced τ_E as good as that at 1.6 T

- **Impurity species (Ne, Ar, Kr) scan**
 - Ar and Kr injection can improve the confinement, but Ne is still the best
 - Radiative loss fraction limit precludes mass density increase for stabilization with higher Z under DIII-D conditions

- **Neon injection into a circular, inner-limited discharge**

- **q-scan / B_T scan at constant (\approx maximum) neon injection**
ARGON AND KRYPTON INJECTION CAN ALSO IMPROVE CONFINEMENT, BUT PLASMA RESPONSE IS SLOWER THAN NEON

- $P_{\text{rad}}/P_{\text{in}} \approx 75\%$ (fixed)
- Krypton injection - similar behavior but more modest transport reduction
- Impurity fraction decreases faster than atomic mass increases
 - Neon is best theoretically
NEON INJECTION INTO A CIRCULAR, INNER-WALL LIMITED DISCHARGE EXHIBITS SAME FEATURE AS THAT IN A DIVERTED DISCHARGE, IMPLYING THE SAME PHYSICAL MECHANISM IS AT WORK

- Improvement persists during sawtooth phase
- The turbulence suppression mechanism (reduced γ_{max} and increased ω_{ExB}) appears to be at work:

<table>
<thead>
<tr>
<th></th>
<th>Neon</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_{max}</td>
<td>0.19</td>
<td>0.43</td>
</tr>
<tr>
<td>ω_{ExB}</td>
<td>0.57</td>
<td>0.51</td>
</tr>
</tbody>
</table>

- Density peaking factor with neon is even lower than no neon

\Rightarrow Density peaking is not a necessary condition for confinement improvement
STRONG NEON INJECTION REDUCES BOTH LONG-WAVELENGTH TURBULENCE AND ION TRANSPORT TO THE MINIMUM LEVELS

- B_T and q_{95} scans with injection of a fixed (~maximum) quantity of neon
- χ_i with strong neon injection reaches neoclassical levels almost regardless the initial conditions
- Reduction of the fluctuation reaches near diagnostic detection level
- The overall performance with neon is determined by other parameters
MAGNETIC BRAKING EXPERIMENT SHOWED AN IMPORTANT ROLE OF ExB SHEARING IN IMPROVED CONFINEMENT WITH NEON INJECTION

[D.R. Ernst: MO1.9]
CONCLUSIONS

- External impurity injection in L-mode edge discharges in DIII-D produced:
 - Clear confinement improvement ($\times2$ in τ_E and S_n)
 - Reduction in all transport channels (χ_i to neoclassical)
 - Simultaneous reduction of long-wavelength turbulence
- Reduction in fluctuations and ion thermal transport is attributed to two impurity-induced effects working synergistically: reduction of toroidal drift wave turbulence and $E\times B$ shear suppression
- Impurity injection is observed to trigger reduction of long-wavelength turbulence by increasing the gradient of toroidal rotation which enhances $E\times B$ flow shear
- Time-dependent simulations with GLF23 model show the dominant role of $E\times B$ shearing and a possibility of using impurity injection as a trigger
 - Remove impurity source after obtaining confinement improvement
- Impurity species scan shows the neon producing the largest effect
- Neon injection into a circular, inner-limited discharge show similar characteristics, indicating common physics mechanisms with the above
- B_T and q scan with neon injection, showing ion transport approaching the neoclassical level
- Theory-based transport simulations (GLF23) and a magnetic braking experiment show the important role of $E\times B$ shearing suppression