## Reduction of Tile Heating, Particle, and Carbon Sources with the New DIII-D Divertor 2000

by C.J. Lasnier\* for C.B. Baxi, M.A. Mahdavi, G.D. Porter,\* D.G. Whyte,<sup>†</sup> W.P. West, N.S. Wolf,\* and the DIII-D Team

> \*Lawrence Livermore National Laboratory <sup>†</sup>University of California, San Diego, California

Presented at the American Physical Society Division of Plasma Physics Meeting Quebec City, Canada

October 23-27, 2000



2000APS/wj



- Local tile heating was reduced by tile alignment and contouring.
- Modeling indicates that baffling plays a major role in reduced core carbon contamination.
- Pump and baffle are effective.



## Mis-aligned tiles suffer strong erosion



#### **Divertor-2000 built for core density and impurity control**





### New system pumps the inner strike point, outer pump existing



#### Accurate alignment and smaller gaps reduce tile edge heating





06 alignment reduces hot spots

#### Inner Strike position moved from contoured to flat tiles



# Horizontal surface temperature profiles from IRTV image show much less peaking on the contoured tiles





#### Long pulse fixed strike locally heats the ceiling





#### No increase in core carbon seen with high tile temperature



### At 1500 K, Carbon yield ~ 4x physical sputtering



J. Hogan et al. GP1.143 this meeting

\*Radiation-Enhanced Sublimation



## UEDGE modeling indicates that baffling plays a major role in lower core carbon with divertor 2000



# Carbon concentration is reduced compared to previous operation





#### **UEDGE** matches measurement of core ionization





DIII-D shot #101560 and UEDGE simulation tpd30

## UEDGE predicts core ionization reduced by baffle without pumping

• UEDGE matches measurement of core ionization in baffled discharge





DIII-D shot #101560 and UEDGE simulation tpd30



#### **Density control achieved with the new Divertor 2000**



- Local tile heating was reduced on the new inner wall tiles by alignment and contouring.
- Modeling indicates that baffling plays a major role in reduced core carbon contamination.
- Many discharges show reduced carbon content.
- The new upper inner pump and baffle are installed and working. Pumping is effective as predicted.

