Nonlinear Tearing Mode Driven by a Current Density Gradient

T.H. JENSEN, General Atomics — It has been suggested that a linearly stable tearing mode may be nonlinearly unstable, driven by a current density gradient at the singular surface. This is under the assumptions of single fluid MHD. Qualitatively, this instability may have properties similar to those of “neoclassical” tearing modes, driven by a pressure gradient. In order to find out if the suggestion is correct, a numerical study was undertaken. The algorithm used for the study is a generalization of one used previously for studying the saturated island width of linearly unstable modes. The algorithm allows construction of a sequence of forced equilibria sharing a set of “almost ideal MHD constraints.” A sign of the forcing function reveals whether the island is growing or shrinking. A previous study showed that the method is well suited for the study of nonlinear instabilities although neither growth rates nor decay rates are found. Results from the numerical study will be discussed.

1Work supported by U.S. DOE Grant DE-FG03-95ER54309.

T.H. Jensen
jensen@fusion.gat.com
General Atomics