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GLJackson aps00 abstract

Injection of non-intrinsic impurities, e.g., neon, has produced enhancements in the energy
confinement time, τE, and the neutron yield, Snn, in the DIII-D and JET tokamaks.
Comparing effects of impurity seeding in both tokamaks is important in establishing scaling
relations extrapolating these scenarios to larger devices such as fusion reactors. Values
of H89P up to 2.0 with simultaneous reduction of turbulence in DIII-D and 1.7 in JET were
obtained in diverted neon seeded discharges with an L-mode edge with significant radiation
(Prad tot/Pin = 0.5--0.8). We will discuss similarities and differences between DIII-D and
JET discharges including gyrokinetic simulations of turbulent growth rates. Effects of
impurity injection in inner wall limited DIII-D discharges will also be discussed.

Use of Impurity Injection for Improved Performance

in the DIII-D and JET Tokamaks

Abstract
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MOTIVATION

● Radiating mantle discharges may provide attractive reactor s

High density operation near the Greenwald density limit

A large radiating power fraction, reducing peak heat fluxes to f

An L—mode edge, eliminating transient heat pulses such as ELMS

Enhanced confinement, above L—mode scaling, reducing auxiliary p
for ignition

● Although enhanced confinement with impurity seeding has been
many tokamaks (e.g., ISX-B, TEXTOR, ASDEX-U, and DIII—D), ac
performance on larger devices is a critical step in evaluati
such an approach

● Comparison of the effects of impurity seeding in different d
important in order to

Obtain an understanding of the common physical mechanisms

Provide size scaling for extrapolation to reactor devices
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NEON SEEDED L-MODE DIVERTED DISCHARGES HAVE EXHIBITED
ENHANCED CONFINEMENT, H89P UP TO 2, AND A DOUBLING OF THE NEUTRON

RATE COMPARED TO REFERENCE DISCHARGES WITHOUT NEON.
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INCREASED TOROIDAL ROTATION IS OBSERVED 
IN DIII-D AFTER IMPURITY SEEDING  

BOTH WMHD AND vφ DECREASE AFTER THE ONSET 
OF MHD (USUALLY m/n=3/2 or SAWTEETH)

      
0

100

200

      
0

2

4

      
0

4

8

800 1000 1200 1400 1600 1800
0.0

0.4

0.8

vφ(km/s)
R=1.96m

Bn=even
(G)

Bn=odd
(G)

WMHD
(MJ)

Time(s)

10xΓneon
( T-l/s)

98774,75,77

Neon Puff



GLJackson aps00 f4

IN DIII-D DISCHARGES, Zeff INCREASES WITH NEON INJECTION, BUT
THIS IS OFFSET BY HIGHER Ti AND ne, PRODUCING A LARGER NEUTRON

YIELD THAN REFERENCE DISCHARGES
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EVEN WITHOUT IMPROVED CONFINEMENT, HIGHER Zimp PRODUCES THE 
SAME NEUTRON YIELD AT HIGHER Zeff, THUS FUSION REACTORS WITH IMPURITY
SEEDING MAY OPERATE AT HIGHER Zeff THAN THE ITER BASELINE VALUE OF 2.0.

Pfus
 ~    ne(Zimp-Zeff)    

2

                   (Zimp - 1) ][
For example, Zeff       =  2.0 (ITER baseline) has the same fusion yield as Zeff     =  2.8 or
Zeff       =  8.0 (assuming single specie Zimp and other parameters held fixed).   

carbon neon

krypton
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DENSITY FLUCTUATIONS PROMPTLY DROP AFTER NEON INJECTION
 (r > 0.5), THEN EXHIBIT  A LONGER TERM DECLINE 
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ρ  = 0.64
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WITH NEON, REDUCED DENSITY FLUCTUATIONS ARE 
ACCOMPANIED BY AN INCREASE IN THE ExB SHEARING RATE 
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IMPROVED CONFINEMENT WITH NEON SEEDING HAS
 BEEN OBSERVED IN JET.  

HOWEVER THE RAPID ONSET OF ELMS OR SAWTEETH 
LIMIT THE DURATION OF THE HIGHEST PERFORMANCE PHASE.
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JET L-MODE IMPURITY SEEDED DISCHARGES EXHIBIT 
BEST PERFORMANCE AT HIGHEST POWER 

- ELMS OR SAWTEETH LIMIT THE HIGH PERFORMANCE PHASE 
- NORMALIZED DENSITY ALSO INCREASES WITH POWER           

(Neon injection,  "Corner" divertor configuration)
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TRANSP ANALYSIS SHOWS χi  DECREASING WITH NEON WHILE BOTH 
PLASMA PRESSURE AND THE THERMAL NEUTRON RATE INCREASE.
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 GKS CALCULATIONS SHOW THE LARGEST GROWTH 
RATES SHIFT TO HIGHER k WITH IMPURITY SEEDING

WITH NEON, FREQUENCY AND k RANGE INDICATE TRAPPED ELECTRON MODES AT
LARGEST GROWTH RATE.  HOWEVER, ITG GROWTH RATES ARE REDUCED (k < 5).
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GYRO-KINETIC SIMULATION (GKS) MODELING SHOWS THE TRAPPED 
ELECTRON MODE  (TEM) HAS THE LARGEST GROWTH RATE 

(for x > 0.5) WITH IMPURITY SEEDING IN JET
  THE TEM IS NOT OBSERVED IN THE REFERENCE DISCHARGE (BLUE).
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χi DECREASES MORE RAPIDLY IN DIII-D THAN IN JET, 
BUT EVOLUTION OF THE THERMAL NEUTRON 

FLUX AND Ti ARE QUALITATIVELY SIMILAR 
 (NORMALIZED TO ITER-89P CONFINEMENT TIME)
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COMPARISON OF DIII—D AND JET L—MODE DISCHARGES WITH NEON

DIII—D JET(1999) EFDA/JET(2000)

Configuration USN LSN LSN

∇ B×B drift direction Away from X—point Toward X—point Toward X—point

BT (typ) 1.6 T 3.0 T 1.8-2.2 T

q95 (typ) 3.6 4.0 3.3-4.4

H89P (max) 2.0 ~1.4 (in L—mode) 1.9 (in L—mode)

ne/nGW 0.5 0.25 0.46

Prad/Pin 0.7 (typ) 0.6 (max) 0.6 (max)

Vφ increase after neon? Yes No yes

Zeff     2.5-3.5 4-6 5-6

Termination of high
performance

m/n=3/2 or
sawteeth

sawteeth ELMs or sawteeth

Largest reduction in
thermal diffusivity

ions ions ions
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DIII-D INNER WALL LIMITED DISCHARGES (SHAPE SIMILAR TO TEXTOR)
HAVE BEEN USED TO COMPARE TEXTOR RI-MODE TO DIII-D AND TO

EXPLORE POSSIBLE SIMILAR PHYSICAL MECHANISMS
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0.904
0.025

102115.01600
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DIII-D NEON SEEDED LIMITED DISCHARGES EXHIBIT ENHANCED
CONFINEMENT AND HIGHER DENSITY THAN A REFERENCE DISCHARGE

(BLACK), EVEN AFTER THE ONSET OF SAWTEETH.
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INNER-WALL LIMITED (TEXTOR-LIKE) RI-MODE REPRODUCED
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BES Measures Fluctuation Reduction
 - Similar turbulence suppression

  mechanism appears to be at work

 - Improvement persists during
  sawtoothing phase

(Reductions in density fluctuations (DIII-D  IWL ) are similar to DIII-D diverted discharges)
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CONCLUSIONS

O   APPLICATION OF IMPURITY SEEDING HAS LED TO L-MODE ENHANCED 
CONFINEMENT,H89P UP TO ~ 2, IN BOTH THE DIII-D AND JET TOKAMAKS

O    IN DIII-D, IMPURITY DISCHARGES, FLUCTUATION MEASUREMENTS AND 
DETAILED MODELING INDICATE THAT ITG TURBULENCE IS SUPPRESSED,
RESULTING IN REDUCED THERMAL DIFFUSIVITIES

O    IN JET IMPURITY DISCHARGES (L-MODE), H89P INCREASES WITH INPUT 
POWER.  BEST PERFORMANCE IS LIMITED BY EARLY ELMS AND/OR SAWTEETH.
GKS MODELING SHOWS THAT GROWTH RATES OF LOW k MODES ARE REDUCED

O    INNER WALL LIMITED DIII-D DISCHARGES EXHIBIT SIMILAR BEHAVIOR TO 
DIVERTED DISCHARGES AND TO THE TEXTOR RI-MODE

O    THESE OBSERVATIONS SUGGEST A COMMON PHYSICAL MECHANISM FOR
THE EFFECT OF IMPURITIES IN JET, DIII-D, AND TEXTOR, NAMELY A REDUCTION 
ITG TURBULENCE ALLOWING LOWER THERMAL DIFFUSIVITIES, LEADING TO 
ENHANCED CONFINEMENT


