CONTROL OF INTERNAL TRANSPORT BARRIERS IN DIII-D*

C.M. Greenfield, E.J. Doyle,¹ E.J. Synakowski,² K.H. Burrell, J.C. DeBoo, P. Gohil, G.L. Jackson, J.E. Kinsey,³ G.R. McKee,⁴ M. Murakami,⁵ R.I. Pinsker, R. Prater, C.L. Rettig,¹ T.L. Rhodes,¹ G.M. Staebler, B.W. Stallard⁶

> General Atomics San Diego, California

Presented at the 42nd Annual Meeting of the APS Division of Plasma Physics October 23-27, 2000 Quebec, Canada

*Work supported by DOE Contracts DE-AC03-99ER54463, DE-AC02-76CH03073, DE-AC05-00OR22725, W-7405-ENG-48, Grants DE-FG03-86ER53266, DE-FG03-92ER54141, DE-FG02-92ER54139.

OVERVIEW

- $E \times B$ shear is leading effect in creating internal transport barriers (ITB).
 - 1999: ITBs broader with counter-NBI than in similar discharges with co-NBI.
 - Co-NBI: Rotation dominates and opposes pressure gradient contribution to E×B shearing rate; increased or broadened pressure profile is *destabilizing* to turbulence.
 - Counter-NBI: Pressure gradient term dominates; increased or broadened pressure profile is *stabilizing* to turbulence.
 - 2000: Quiescent Double-Barrier regime (with sustained $\beta_N H^{89} \le 7$) combines counter-injected ITB and steady-state ELM-free H-mode edge condition.
 - Separation between core and edge barriers provided by null in E×B shearing rate.
- Electron thermal transport is more difficult to reduce.
 - Strong electron ITB generated with localized direct electron heating (ECH).
 - Believed to require stabilization of both low-k (same as requirement for ion ITB) and high-k (ETG; an additional requirement) turbulence.
 - E×B shear too weak an effect to reduce high-*k* turbulence.
 - Simulations identify α -stabilization (also known as Shafranov shift stabilization) as trigger mechanism for electron ITB.

COUNTER-NBI RESULTS IN BROADER PROFILES

- 99849 (1.17s):
 - Counter-NBI
 - $-W_{\rm MHD} = 0.9 \,\rm MJ$
 - $P_{\rm NBI} = 11.2 \,\rm MW$ (6.5 MW absorbed).
- 87031 (1.82s):
 - Co-NBI
 - $-W_{\rm MHD} = 1.2 \text{ MJ}$
 - $-P_{\text{NBI}} = 9.6 \text{ MW}$ (7.6 MW absorbed).

COUNTER-NBI IS FAVORABLE FOR ITB EXPANSION DUE TO INTERPLAY OF TERMS IN E $\times B$ SHEARING RATE

- Shearing rate $\omega_{E \times B}$ can be separated into pressure gradient and rotation terms.
 - Total shearing rate is species independent, but individual terms depend on species.
 - Calculation shown is for main (deuterium) ions:
 - Total $\omega_{\text{E}\times\text{B}}$ from CER carbon impurity measurements.
 - ∇p term uses TRANSP calculation of main ion thermal density.
 - Rotation term by subtraction.
- Counter-NBI is more favorable than co-NBI for barrier expansion:
 - Co: rotation term dominates $\Rightarrow \omega_{E \times B}$ decreases with increased or broadened pressure profile \Rightarrow turbulence is destabilized.
 - Counter: ∇p term dominates $\Rightarrow \omega_{E \times B}$ increases with increased or broadened pressure profile \Rightarrow turbulence is stabilized.

DISTINCT CORE AND EDGE BOUNDARIES COEXIST IN THE QUIESCENT DOUBLE-BARRIER REGIME

- Distinct barriers coexist in larger devices, but only with degradation of the ITB in co-injected discharges in DIII-D:
 - With ELMs: ELMs penetrate plasma and impede core barrier.
 - ELM-free: Core and edge barriers merge.
 - Ion thermal transport can become neoclassical throughout entire plasma, but cannot be sustained.
- Double-barrier mode predicted with counter-NBI in DIII-D:
 - E_r strongly negative both in core and at edge (H–mode) barriers.
 - Flattening of E_r profile inside H-mode edge locally removes E×B shear stabilization.
 - Inherent low confinement region expected to separate core and edge.
- Quiescent H-mode edge allows core barrier to exist without ELM degradation:
 - Quiescent Double-Barrier (QDB) regime allows sustained high performance.

SUSTAINED HIGH PERFORMANCE IN THE QUIESCENT DOUBLE-BARRIER REGIME

- Quiescent double-barrier (QDB) regime combines:
 - Quiescent H-mode edge barrier:
 - Only observed with counter-NBI.
 - Edge Harmonic Oscillation (EHO): a benign replacement for ELMs.
 - Density control achieved through divertor cryopumping.
 - Particle flux enhanced by EHO.
 - Core barrier:
 - Characteristics similar to L-mode edge ITB with a pedestal.
 - Constant over lifetime of QDB regime.
- Counter-NBCD maintains $q_{\min} > 1$.
- Parameters obtained to date (all with I_p =1.3MA, B_T =1.8-2.1T): $\beta_N \leq 2.9, H^{89} \leq 2.5, \beta_N H^{89} \leq 7, S_N \leq 4 \times 10^{15} \text{ neutrons/s}$
- Sustained for length of beam pulse.

(H^{89} corrected for beam ion orbit losses: increased by ~10%)

Greenfield APS 2000 6

COUNTER-NBI HEATED CORE BARRIER PERSISTS WITH THE ADDITION OF AN H-MODE EDGE

L-mode edge ITB (99849 1.12s)

- Core profiles similar to Lmode edge ITB with additional edge pedestal.
- Flat region in *E*_r profile corresponds to separation between core and edge barriers.
 - Note that the barriers frequently merge in co-NBI discharges in DIII-D.

QDB (103740 3.3s)

CORE TRANSPORT IN QDB REGIME SIMILAR TO L-MODE EDGE ITB

- Core transport with ITB reduced to similar levels regardless of L- or H-mode (QDB) edge.
 - Second barrier appears near edge of QDB discharge.
- Separation between edge and core barriers corresponds to flattening of E_r profile and null in shearing rate $\omega_{E \times B}$.
- All three discharges with counter-NBI.

TURBULENCE IS REDUCED THROUGHOUT MOST OF THE QDB PLASMA

• With reduced broadband turbulence, core Alfvén modes are clearly visible in FIR scattering data, as are the low frequency edge harmonic oscillations associated with QH-mode operation.

DECREASED CORE TURBULENCE CORRELATION LENGTHS IN QDB REGIME INDICATE REDUCED TURBULENCE TRANSPORT STEP SIZE

- In L-mode, correlation lengths are observed to scale approximately with the poloidal ion gyroradius $\rho_{\theta,s}$ (or 5-8 ρ_s)
- In QDB discharges, core correlation lengths are significantly different: factor of 2-8 smaller than L-mode.

THE ELMLESS "QUIESCENT H-MODE" EDGE IS A KEY FEATURE OF THE QDB REGIME

- ELM-free regime... but particle transport near boundary is sufficient to allow density control via cryopumping.
- Edge gradients similar to ELMing phase.
 Extremely deep *E*_r well.
- Elimination of ELMs' periodic divertor heat pulses a desirable feature for reactor class devices.
- QH-mode only obtained with counter-NBI.

Greenfield APS 2000 11

EDGE HARMONIC OSCILLATION BELIEVED RESPONSIBLE FOR DESIRABLE FEATURES OF THE QH-MODE EDGE

- Localized near edge of plasma.
- Can appear at one or more toroidal mode numbers: n=1-10 has been seen.
 - Sometimes shifts mode number during QH-mode with no apparent change to profiles.
- Visible in density, temperature and magnetic fluctuations.
- Drives enhanced particle transport.
 - Allows particle control.

- The EHO has been observed between ELMs in ELMy discharges with both coand counter-NBI.
- ELMs eliminated only with counter-NBI.

Burrell, BI1.002

ELECTRON ITB PRODUCED BY ECH

- An electron thermal transport barrier has been obtained in a discharge heated with low-power ECH (0.5 MW) and neutral-beam injection (0.5 MW).
 - Central electron temperature approaches 6 keV with $T_e/T_i \ge 10$.
 - Electron thermal transport essentially eliminated in a narrow barrier region.
- The electron transport barrier appears under conditions where we would normally expect any barrier to be impeded by turbulence.
 - Low- and high-k turbulence growth rates calculated too large to be suppressed by E×B shear alone.
 - E×B shear may still have an important effect on low-k stability.
 - Growth rates are very sensitive to α (normalized pressure gradient).
- Predictive simulation with the GLF23 model reproduces the development of the electron transport barrier with sufficiently large α .
- α -stabilization appears to be a requirement in order to enter this regime.

DIRECT ELECTRON HEATING GENERATES AN ELECTRON INTERNAL TRANSPORT BARRIER

- Beam blips for MSE and CER, time averaged $P_{\text{NBI}} \approx 0.5$ MW (counter).
 - Poor beam ion confinement at low current and counter-NBI... most of this power is lost.
- Electron thermal ITB develops rapidly after onset of ECH.
 - Barrier increases in strength while remaining nearly stationary in position.
 - Little or no barrier appears in ion thermal, particle or angular momentum channels.
 - But the sources for these channels are very small.

ELECTRON TRANSPORT BARRIER DEVELOPS RAPIDLY FOLLOWING ECH ONSET

- Profiles flat or slightly hollow inside barrier.
- Barrier location expands ahead of ECH heating location.
- Barriers with nearly identical profiles have been observed with co- and counter-ECCD and pure heating (radial launch).
- Smaller response in T_i profile appears even without ECH.

TRANSPORT DECREASES IN BOTH THE ION AND ELECTRON CHANNELS AT THE ECH TURNON

REFLECTOMETER INDICATES CORE FLUCTUATION INTENSITY REDUCED WITH ECH

• Low-*k* measurement indicative of ITG and/or TEM stability.

- Reduction appears consistent with hypothesis that both low- <u>and</u> high-k turbulence must be stabilized for formation of e-ITB.
 - Peak at $\rho \approx 0.37$ may correlate with feature in shearing rate profile; requires further analysis.

ESTIMATED E×B SHEAR IS NOT LARGE ENOUGH TO SUPPRESS LOW-k MODES

- $E \times B$ shearing rate estimated using neoclassical (NCLASS) poloidal rotation.
 - No measurement available for this discharge, but v_{θ} is small contribution.
 - Error bars probably significant: typically ~25% with measured v_{θ} .
- Growth rate for low-k modes somewhat exceeds shearing rate .
 - ITG and/or TEM predicted unstable... should prevent ion or electron ITB.
- Growth rate increases when $\alpha \Rightarrow 0$ (β set to zero in calculation).

ELECTRON TEMPERATURE GRADIENT IS MARGINAL FOR STABILITY TO ETG MODES IN THE BARRIER

- Electron temperature gradient in barrier region at marginal stability level for ETG mode.
 - Consistent with previous observations with reduced core electron transport [B.W. Stallard, *et al.*, Phys. Plasmas 6, 1978 (1999)]
- α=0 (β set to zero in code) reduces critical gradient below experimental profile.
- Large calculated critical gradient inside barrier suspicious.
 - May be numerical consequence of resistive interchange instability.

TRAPPED ELECTRON AND ELECTRON TEMPERATURE GRADIENT MODES BOTH HAVE SIGNIFICANT CALCULATED GROWTH RATES

- Spectra shown at point with peak a/L_{Te}, where gradient slightly exceeds marginal level for ETG.
 - ETG feature vanishes at critical level.
 - Increases rapidly above critical level.
 - This condition can enforce marginality.
- Estimated E×B shearing rate appears too small to suppress turbulence in either range by itself.
 - May be large enough to have an effect on low-k range.

NEGATIVE MAGNETIC SHEAR AND SHAFRANOV SHIFT CAN BE STRONGLY STABILIZING INFLUENCES

- In general, growth rate spectrum is reduced for negative magnetic shear in the collisionless limit [Waltz, *et al.*, Phys. Plasmas 4, 2482 (1997)].
 - Data shown for a typical case.
- Further reductions occur with increasing α .
 - Normalized pressure gradient $\alpha = -\mu_0 P'(\Psi) V'(\Psi) (V/4\pi R_0)^{1/2}$
 - α can be *destabilizing* for strong positive shear.

Shafranov shift and α stabilization, both commonly used terms, are synonymous.

BIFURCATION IN ELECTRON TEMPERATURE PROFILE IS PREDICTED BY GLF23 MODEL

- The GLF23 model, including both heat flux and momentum bifurcation mechanisms, dynamically follows bifurcations leading to formation of ITBs.
 - Includes ITG (ion temperature gradient mode), TEM (trapped electron mode), ETG (electron temperature gradient mode).
- *n*, *q*, sources, sinks, and equilibrium from analysis.
- *T* and v_{ϕ} profiles initialized at pre-barrier levels and are evolved including the effects of E×B shear stabilization calculated from predicted profiles.
 - Uses generalized E×B shearing rate [R.E. Waltz, R.L. Miller, Phys. Plasmas 6, 4265 (1999)].
- Boundary conditions enforced at $\rho\text{=}0.9$ using experimental data.
- Simulated evolution predicts barrier formation in $T_{\rm e}$ profile.

TIME DEPENDENT SIMULATION REPRODUCES ELECTRON THERMAL TRANSPORT BARRIER

- Dynamic simulation begins with experimental profiles prior to barrier formation.
- Electron ITB forms in simulation with sufficiently large $\alpha.$
 - $\alpha = c_{\alpha} \alpha^{calc}$, where α^{calc} is the value of α calculated from the profiles used by the code, and c_{α} is an arbitrary coefficient.
 - No barrier forms when $c_{\alpha} < 1.35$.

SAN DIEGO

- Without E×B shear, $c_{\alpha} \ge 1.7$ required for barrier formation.
 - 35% is well within experimental or numerical uncertainty.

SIMULATED BARRIER ONLY MAINTAINED WHEN EFFECTS OF $\alpha\mbox{-}STABILIZATION$ ARE INCLUDED

 "Backwards" simulations start with experimental profiles of fully developed e-ITB and run to steady-state.

A WORKING MODEL FOR TRANSPORT AND ITS CONTROL

- Ion ITB can occur from stabilization of low-*k* modes alone.
 - Either E×B shear or α -stabilization can be effective by themselves.
- Electron ITB requires stabilization of turbulence at both low- and high-*k*.
 - E×B shear alone insufficient.
 - α-stabilization appears able to explain electron ITBs in DIII–D.
 - ETG streamer formation may complicate the picture, but streamers not expected with negative shear [F. Jenko, *et al.*, Phys. Plasmas 7, 1904 (2000)].
- Since the requirements for electron ITB formation are a superset of those for ion ITB formation, additional power to the ion channel in an electron ITB may trigger simultaneous electron and ion barriers.

SUMMARY

- Addition of a Quiescent H-mode edge to a counter-injected ITB plasma results in the sustainable high performance Quiescent Double-Barrier regime.
 - ELMs replaced by the more benign Harmonic Edge Oscillation.
 - Little or no impact on core barrier.
 - Allows particle control.
 - Eliminates pulsed divertor heat load characteristic of ELMs.
 - Separation between core and edge barriers provided by null in $E\infty B$ shearing rate.
 - Parameters obtained to date (all with I_P =1.3MA, B_T =1.8-2.1T): $\beta_N \leq 2.9$, $H^{89} \leq 2.5$, $\beta_N H^{89} \leq 7$, $S_N \leq 4 \times 10^{15}$ neutrons/s.
- Direct, localized electron heating (ECH) can trigger formation of a strong electron ITB.
 - Formation of e-ITB reproduced by theory-based simulations.
 - Requires α -stabilization; E×B shear not effective stabilizer of short scale modes.
 - Current understanding suggests simultaneous ion and electron barriers can be obtained by heating ions in the e-ITB target plasma.
- These results taken together support a working model for transport in which E×B shear and α-stabilization both stabilize turbulence at different scales, resulting in the frequent observation of ion ITBs and less frequent observation of electron ITBs.

