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OVERVIEW
• E×B shear is leading effect in creating internal transport barriers (ITB).

– 1999: ITBs broader with counter-NBI than in similar discharges with co-NBI.
• Co–NBI: Rotation dominates and opposes pressure gradient contribution to E×B

shearing rate; increased or broadened pressure profile is destabilizing to
turbulence.

• Counter-NBI: Pressure gradient term dominates; increased or broadened pressure
profile is stabilizing to turbulence.

– 2000: Quiescent Double-Barrier regime (with sustained βNH89 ≤ 7) combines
counter-injected ITB and steady-state ELM-free H-mode edge condition.
• Separation between core and edge barriers provided by null in E×B shearing rate.

• Electron thermal transport is more difficult to reduce.
– Strong electron ITB generated with localized direct electron heating (ECH).
– Believed to require stabilization of both low-k (same as requirement for ion ITB) and

high-k (ETG; an additional requirement) turbulence.
• E×B shear too weak an effect to reduce high-k turbulence.
• Simulations identify α-stabilization (also known as Shafranov  shift stabilization) as

trigger mechanism for electron ITB.
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COUNTER-NBI RESULTS IN BROADER PROFILES

• 99849 (1.17s):
– Counter-NBI
– WMHD = 0.9 MJ
– PNBI = 11.2 MW

(6.5 MW
absorbed).

• 87031 (1.82s):
– Co-NBI
– WMHD = 1.2 MJ
– PNBI = 9.6 MW

(7.6 MW
absorbed).
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COUNTER-NBI IS FAVORABLE FOR ITB EXPANSION DUE TO
INTERPLAY OF TERMS IN E×B SHEARING RATE

• Shearing rate ωE×B can be separated into
pressure gradient  and rotation terms.
– Total shearing rate is species independent,

but individual terms depend on species.
– Calculation shown is for main (deuterium)

ions:
• Total ωE×B from CER carbon impurity

measurements.
•  ∇p term uses TRANSP calculation of

main ion thermal density.
• Rotation term by subtraction.

•  Counter-NBI is more favorable than co-NBI for
barrier expansion:
– Co: rotation term dominates ⇒ ωE×B

decreases  with increased or broadened
pressure profile ⇒ turbulence is destabilized.

– Counter: ∇p term dominates ⇒ ωE×B
increases with increased or broadened
pressure profile ⇒ turbulence is stabilized.
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DISTINCT CORE AND EDGE BOUNDARIES COEXIST IN THE
QUIESCENT DOUBLE-BARRIER REGIME

• Distinct barriers coexist in larger devices, but only with degradation of the ITB in
co-injected discharges in DIII–D:
– With ELMs: ELMs penetrate plasma and impede core barrier.
– ELM-free: Core and edge barriers merge.

• Ion thermal transport can become neoclassical throughout entire plasma,
but cannot be sustained.

• Double-barrier mode predicted with counter-NBI in DIII–D:
– Er strongly negative both in core and at edge (H–mode) barriers.

• Flattening of Er profile inside H–mode edge locally removes E×B shear
stabilization.

– Inherent low confinement region expected to separate core and edge.

• Quiescent H-mode edge allows core barrier to exist without ELM degradation:
– Quiescent Double-Barrier (QDB) regime allows sustained high performance.
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SUSTAINED HIGH PERFORMANCE IN
THE QUIESCENT DOUBLE-BARRIER REGIME

• Quiescent double-barrier (QDB) regime combines:
– Quiescent H-mode edge barrier:

• Only observed with counter-NBI.
• Edge Harmonic Oscillation (EHO):

a benign replacement for  ELMs.
• Density control achieved through divertor

cryopumping.
– Particle flux enhanced by EHO.

– Core barrier:
• Characteristics similar to L-mode edge ITB

with a pedestal.
• Constant over lifetime of QDB regime.

• Counter-NBCD maintains qmin > 1.

• Parameters obtained to date (all with IP=1.3MA,
BT=1.8-2.1T):
βN≤2.9, H89≤2.5, βNH89≤7, SN≤4×1015 neutrons/s

• Sustained for length of beam pulse.

Doyle, M01.007

βNH89

     

    

     

     

     

     

0 1 2 3 4

IP (MA)

q0

qmin

PNBI

Prad

H89

βN

Dα (a.u.)

<ne>
(1019 m-3)

BT (T)
-2

-1

0

0

2

4

0
1

2
3

0
1

2
3

0
2
4
6
8

0
5

10
15

103740

m
-3

%
-M

A-
T/

m
%

-M
A-

T/
m

M
W

time (seconds)

(7)

(2.5)

(2.8)

ELM-free

1
2

3
4

(H89 corrected for beam ion orbit losses: increased by ~10%)



Greenfield   APS 2000   7
NATIONAL FUSION FACILITY

S A N  D I E G O

DIII–D

COUNTER-NBI HEATED CORE BARRIER PERSISTS WITH THE
ADDITION OF AN H-MODE EDGE

• Core profiles similar to L-
mode edge ITB with
additional edge pedestal.

• Flat region in Er profile
corresponds to separation
between core and edge
barriers.
– Note that the barriers

frequently merge in co-
NBI discharges in DIII-D.
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CORE TRANSPORT IN QDB REGIME SIMILAR TO L-MODE EDGE ITB

• Core transport with ITB
reduced to similar levels
regardless of L-  or H-mode
(QDB) edge.
– Second barrier appears

near edge of QDB
discharge.

• Separation between edge and
core barriers corresponds to
flattening of Er profile and null
in shearing rate ωE×B.

• All three discharges with
counter-NBI.
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TURBULENCE IS REDUCED THROUGHOUT
MOST OF THE QDB PLASMA

• With reduced broadband turbulence, core Alfvén modes are clearly visible in FIR
scattering data, as are the low frequency edge harmonic oscillations associated with QH-
mode operation.

Fr
eq

ue
nc

y 
(k

Hz
)

1000

500

0

–500

–1000

Time (s)
1.0 2.00.0 3.0 4.0

NBI initiation

0

4
L-mode edge ITB
plasma, same scale

Edge harmonic
oscillation

Core Alfvén modes

}

Core, high
field side}

Core, low field 
side}

103740QDB phase



Greenfield   APS 2000   10
NATIONAL FUSION FACILITY

S A N  D I E G O

DIII–D

DECREASED CORE TURBULENCE CORRELATION LENGTHS IN QDB
REGIME INDICATE REDUCED TURBULENCE TRANSPORT STEP SIZE

• In L-mode, correlation lengths are
observed to scale approximately with
the poloidal ion gyroradius ρθ,s (or 5-8 ρs)

• In QDB discharges, core correlation
lengths are significantly different: factor
of 2-8 smaller than L-mode.
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THE ELMLESS “QUIESCENT H-MODE” EDGE IS
A KEY FEATURE OF THE QDB REGIME

• ELM-free regime… but particle transport
near boundary is sufficient to allow
density control via cryopumping.

• Edge gradients similar to ELMing phase.
– Extremely deep Er well.

• Elimination of ELMs’ periodic divertor
heat pulses a desirable feature for reactor
class devices.

• QH-mode only obtained with counter-NBI.
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EDGE HARMONIC OSCILLATION BELIEVED RESPONSIBLE
FOR DESIRABLE FEATURES OF THE QH-MODE EDGE

• Localized near edge of plasma.
• Can appear at one or more toroidal mode numbers: n=1-10

has been seen.
– Sometimes shifts mode number during QH-mode with

no apparent change to profiles.
• Visible in density, temperature and magnetic fluctuations.
• Drives enhanced particle transport.

– Allows particle control.
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ELECTRON ITB PRODUCED BY ECH

• An electron thermal transport barrier has been obtained in a discharge heated
with low-power ECH (0.5 MW) and neutral-beam injection (0.5 MW).
– Central electron temperature approaches 6 keV with Te/Ti ≥ 10.
– Electron thermal transport essentially eliminated in a narrow barrier region.

• The electron transport barrier appears under conditions where we would normally
expect any barrier to be impeded by turbulence.
– Low- and high-k turbulence growth rates calculated too large to be

suppressed by E×B shear alone.
• E×B shear may still have an important effect on low-k stability.

– Growth rates are very sensitive to α (normalized pressure gradient).

• Predictive simulation with the GLF23 model reproduces the development of the
electron transport barrier with sufficiently large α.

•  α-stabilization appears to be a requirement in order to enter this regime.
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DIRECT ELECTRON HEATING GENERATES
AN ELECTRON INTERNAL TRANSPORT BARRIER

• Beam blips for MSE and CER, time
averaged PNBI≈0.5 MW (counter).

– Poor beam ion confinement at
low current and counter-NBI…
most of this power is lost.

• Electron thermal ITB develops
rapidly after onset of ECH.
– Barrier increases in strength

while remaining nearly stationary
in position.

– Little or no barrier appears in ion
thermal, particle or angular
momentum channels.
• But the sources for these

channels are very small.
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ELECTRON TRANSPORT BARRIER DEVELOPS RAPIDLY
FOLLOWING ECH ONSET

• Profiles flat or slightly hollow inside barrier.
• Barrier location expands ahead of ECH heating location.
• Barriers with nearly identical profiles have been observed with co- and counter-ECCD

and pure heating (radial launch).
• Smaller response in Ti profile appears even without ECH.
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TRANSPORT DECREASES IN BOTH THE ION AND ELECTRON
CHANNELS AT THE ECH TURNON

• Rapid decrease of both electron and ion diffusivities after ECH onset.
– Relative change in χ profiles are accurately determined despite

large uncertainties in quantitative  transport values.
• Uncertainty in q profiles ⇒ uncertainty in ohmic power near

axis.
• Large, localized source appears at e-ITB location due to ECH.

• Electron diffusivity becomes extremely small in barrier region.

• Change in ion temperature profile small due to small power to ion
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REFLECTOMETER INDICATES CORE FLUCTUATION
INTENSITY REDUCED WITH ECH

• Low-k measurement indicative of ITG
and/or TEM stability.

• Reduction appears consistent with
hypothesis that both low- and high-k
turbulence must be stabilized for
formation of e-ITB.
– Peak at ρ≈0.37 may correlate with

feature in shearing rate profile;
requires further analysis.
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ESTIMATED E×B SHEAR IS NOT LARGE
ENOUGH TO SUPPRESS LOW-k MODES

• E×B shearing rate estimated using neoclassical (NCLASS) poloidal rotation.
– No measurement available for this discharge, but vθ is small contribution.
– Error bars probably significant: typically ~25% with measured vθ.

• Growth rate for low-k modes somewhat exceeds shearing rate .
– ITG and/or TEM predicted unstable… should prevent ion or electron ITB.

• Growth rate increases when α⇒0 (β set to zero in calculation).
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ELECTRON TEMPERATURE GRADIENT IS MARGINAL FOR
STABILITY TO ETG MODES IN THE BARRIER

• Electron temperature gradient in
barrier region at marginal stability
level for ETG mode.
–  Consistent with previous

observations with reduced core
electron transport [B.W. Stallard,
et al., Phys. Plasmas 6, 1978
(1999)]

•  α=0 (β set to zero in code) reduces
critical gradient below experimental
profile.

• Large calculated critical gradient
inside barrier suspicious.
– May be numerical consequence of
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TRAPPED ELECTRON AND ELECTRON TEMPERATURE GRADIENT
MODES BOTH HAVE SIGNIFICANT CALCULATED GROWTH RATES

• Spectra shown at point with peak
a/LTe, where gradient slightly exceeds
marginal level for ETG.
– ETG feature vanishes at critical

level.
– Increases rapidly above critical

level.
– This condition can enforce

marginality.

• Estimated E×B shearing rate appears
too small to suppress turbulence in
either range by itself.
– May be large enough to have an

effect on low-k range.
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NEGATIVE MAGNETIC SHEAR AND SHAFRANOV SHIFT
CAN BE STRONGLY STABILIZING INFLUENCES

• In general, growth rate spectrum is
reduced for negative magnetic shear
in the collisionless limit [Waltz, et al. ,
Phys. Plasmas 4, 2482 (1997)].
– Data shown for a typical case.

• Further reductions occur with
increasing α.

– Normalized pressure gradient
α≡-µ0P’(Ψ)V’(Ψ)(V/4πR0)1/2

–  α can be destabilizing for strong
positive shear. Shafranov shift and α stabilization,

both commonly used terms, are
synonymous.
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BIFURCATION IN ELECTRON TEMPERATURE PROFILE IS
PREDICTED BY GLF23 MODEL

• The GLF23 model, including both heat flux
and momentum bifurcation mechanisms,
dynamically follows bifurcations leading to
formation of ITBs.
– Includes ITG (ion temperature gradient

mode), TEM (trapped electron mode),
ETG (electron temperature gradient
mode).

• n, q, sources, sinks, and equilibrium from
analysis.

• T and vϕ profiles initialized at pre-barrier
levels and are evolved including the effects
of E×B shear stabilization calculated from
predicted profiles.
– Uses generalized E×B shearing rate [R.E.

Waltz, R.L. Miller, Phys. Plasmas 6, 4265
(1999)].

• Boundary conditions enforced at ρ=0.9 using
experimental data.

• Simulated evolution predicts barrier
formation in Te profile.
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TIME DEPENDENT SIMULATION REPRODUCES ELECTRON
THERMAL TRANSPORT BARRIER

• Dynamic simulation begins with experimental profiles prior to barrier formation.
• Electron ITB forms in simulation with sufficiently large α.

–  α = cα αcalc, where αcalc is the value of α calculated from the profiles used
by the code, and cα is an arbitrary coefficient.

– No barrier forms when cα < 1.35.
– Without E×B shear, cα ≥ 1.7 required for barrier formation.
– 35% is well within experimental or numerical uncertainty.
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SIMULATED BARRIER ONLY MAINTAINED WHEN
EFFECTS OF α-STABILIZATION ARE INCLUDED

• “Backwards” simulations start with experimental profiles of fully
developed e-ITB and run to steady-state.
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A WORKING MODEL FOR TRANSPORT AND ITS CONTROL
• Ion ITB can occur from stabilization of

low-k modes alone.
– Either E×B shear or α-stabilization

can be effective by themselves.

• Electron ITB requires stabilization of
turbulence at both low- and high-k.
– E×B shear alone insufficient.
–  α-stabilization appears able to

explain electron ITBs in DIII–D.
– ETG streamer formation may

complicate the picture, but
streamers not expected with
negative shear [F. Jenko, et al.,
Phys. Plasmas 7, 1904 (2000)].

• Since the requirements for electron ITB
formation are a superset of those for ion
ITB formation, additional power to the ion
channel in an electron ITB may trigger
simultaneous electron and ion barriers.
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SUMMARY
• Addition of a Quiescent H-mode edge to a counter-injected ITB plasma results in the

sustainable high performance Quiescent Double-Barrier regime.
– ELMs replaced by the more benign Harmonic Edge Oscillation.

• Little or no impact on core barrier.
• Allows particle control.
• Eliminates pulsed divertor heat load characteristic of ELMs.

– Separation between core and edge barriers provided by null in E∞B shearing rate.

– Parameters obtained to date (all with IP=1.3MA, BT=1.8-2.1T):
βN≤2.9, H89≤2.5, βNH89≤7, SN≤4×1015 neutrons/s.

• Direct, localized electron heating (ECH) can trigger formation of a strong electron ITB.
– Formation of e-ITB reproduced by theory-based simulations.

• Requires α-stabilization; E×B shear not effective stabilizer of short scale modes.

– Current understanding suggests simultaneous ion and electron barriers can be
obtained by heating ions in the e-ITB target plasma.

• These results taken together support a working model for transport in which E×B shear
and α-stabilization both stabilize turbulence at different scales, resulting in the frequent
observation of ion ITBs and less frequent observation of electron ITBs.


