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A Monte Carlo impurity transport code is
used to understand how intrinsic carbon
iImpurities reach the DIII-D core plasma

Goal

® |dentify the primary points of origin of core penetrating carbon
using a Monte Carlo code that incorporates realisitc sputtering,
molecular dissociation and impurity transport models.

Approach

® Fluid background plasma solutions used to specify the divertor
sputtering flux and divertor/SOL transport properties.

® Physical and chemical sputtering models generate carbon neutral
launch properties at each target plate.

® Molecular dissociation physics modeled for chemically sputtered
carbon.

® Core carbon penetration tallied as a function of source location
and the type of sputtering process used to produce the carbon.

® Wall contributions assessed and compared to divertor sources.

Conclusion

® Experimental benchmarking of individual models being used for
the background plasma, sputtering, molecular dissociation and
impurity transport is essential in any edge modeling code.

== gystematic benchmarking of MCI's physics models has
allowed us to select the best possible set of models for
DIII-D simualtions of carbon penetration into the core.
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The MCI computational domain extends
from the 95% flux surface to the DIII-D walls
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Carbon simulation results are generally
very sensitive to the sputtering physics used

puttering models are a key part of the
MCI simulations process

Yror = Ypuy T YcHEM

Six physical and three chemical
sputtering models are available in MCI
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= Chemical sputtering modeled using either Roth96 [6],
Roth98 [7] or Haasz97m [8].

® DIlI-D benchmarks of MCI simulations [9] using these models
indicate the best choice is Roth94 + Roth96.
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ADAS ionization rates are higher in the divertor
than ADPAK resulting in less core carbon

ADPAK Cl lonization rate (s -1)
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® ADAS96 data is more accurate than the coronal, average ion,
ADPAK data and thus is preferred for MCI modeling.
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The divertor and SOL transport physics in MCI
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IS relatively insensitive to the atomic data
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particles
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of core entries

Total carbon
core density 9.87el7 1.36el7
(m-3)

Integrated carbon sputtering
current = 3.3e21 s-1 (566.5A)

The core entry distribution is independent
of the atomic data (only the magnitude
changes) implying that the atomic data

has relatively little effect on the transport
physics. d
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L

5 10

15 20 25

Core Entry Cell Number

Dili-D

NATIONAL FUSION FACILITY
SSSSSSSS

o} GENERAL ATOMICS
tee-aps00.06



When the plasma is moved away from the outer
divertor structure a bypass channel forms for
physically sputtered carbon in the outer SOL

Cll density calculated by MCI [1019 m-3]
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Physical sputtering & core penetration versus target plate segment number
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® The integrated neutral carbon sputtering rate from physical and chemical
sources is 1.23e21 s1(197.0 Amps) based on the Roth94 + Roth96 models
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Carbon from chemical sputtering near the outer
strike point has a high probability of reaching
the core with the plasma shifted inward

Chemical sputtering & core penetration versus target plate segment number
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e MCI can use either the Alman-Ruzic [10] or the Ehrhardt-
Langer [11] dissociation model. Measurements of CH3 cross
sections [12] and MCI benchmarking against PISCES data
indicates the Alman-Ruzic model is preferred.

® Preliminary MCI runs suggest that 45-50% of the chemically
sputtered carbon from the outer-SOL target plates enters the core.

® About 5-10% of the chemically sputtered carbon from the inner
strike point enters the core through the private flux region.

® Molecular dissociation processes provide an relatively efficient
pathway for neutral carbon from chemical sputtering to reach
the core plasma.
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Wall sources increase the SOL CIl content and
have a 50-60% probability of reaching the core
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Carbon generated by plasma interactions with the walls

IS simulated with a uniform carbon flux at the grid boundarx
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Discussion and results

® Monte Carlo simulations of core carbon penetration probabilities
in tokamaks require a wide range of models working together.

= some of these, such as the impurity transport and molecular
dissociation models, have been individually benchmarked in
PISCES plasmas using MCI (O’'Brien, et al., poster HP1.081).

= others, such as the background plasma and sputtering models
have been collectively benchmarked in DIII-D with MCI [9].

= in addition, MCI simulations have shown that the use of
accurate atomic data is crutial for good benchmarking results.

® The MCI benchmarking process has allowed us to select the best
combination of models needed to assess carbon production and
transport into the core plasma.

® The most significant results from our core penetration studies are:

= preliminary studies indicate that molecular dissociation
increases the probability of core penetration.

= the position of the plasma with respect to the outer divertor
structures strongly affects how physically sputtered carbon
reaches the core.

= physically sputtered carbon sources from the wall have a higher
probability of reaching the core than those from the divertor.
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