Enhanced Performance Discharges in DIII-D With an ITB Combined with Impurity Injection

J.C. DeBoo

C.M. Greenfield, M. Murakami, K.H. Burrell, E.J. Doyle, G. Jackson, J. Kinsey, G. McKee, C.L. Rettig, T. Rhodes, G.M. Staebler, and E.J. Synakowski

DIII-D National Fusion Facility

Presented at the 42nd Annual Meeting of the Division of Plasma Physics
Quebec City, Canada
October 23-27, 2000

Overview

Experiment

 Prior experiments, RI-mode and others, have shown neon injection can improve confinement. This experiment focused on studying the impact of adding neon to discharges with an existing Internal Transport Barrier (ITB).

Goal

Spatially expand location of ITB by neon injection while maintaining good confinement.

Results

 Improved overall performance in both electrons and ions and expanded the thermal and particle transport barriers.

Motivation For Barrier Expansion

- Larger ITB radius and barrier width lead to:
- Higher fusion performance (larger high confinement volume)
- Improved MHD stability limits

 Improved bootstrap current alignment

Discharges With an ITB Were Formed In An Upper Single-Null Configuration

- ITB formed with co-NBI
- ITB Characteristics
 - peaked profiles
 - L-Mode edge
 - weak magnetic shear
 - upper divertor pumping

Neon Injection Into ITB Further Improves Performance

Profiles Are Very Similar Before Neon Injection

Comparison at 1.0 sec in 102940 and 102942

Profiles Become More Peaked Later in Time

Comparison at 1.4 and 1.0 sec, without neon (102942)

Neon Injection Further Increases and Broadens ITB Profiles

Comparison at 1.4 sec with (102940) and without (102942) neon

Neon Injection Into Existing ITB Expands The Region of Reduced Transport To $\rho \sim 0.8$

102940 (neon) and 102942 (no neon) at 1.4 sec

Neon Injection Into Existing ITB Further Reduces Turbulence Across Plasma

 FIR scattering system monitors turbulence across plasma radius and throughout discharge duration

Neon Injection Into Existing ITB Further Reduces Turbulence Locally

BES system provides local measurement of turbulence levels

Turbulence Suppression Mechanisms Are Key To Understanding ITB Formation And Control

 Low-k ITG and TEM modes can be stabilized by ExB flow shear

 High-k ETG modes require reversed shear or a strong Shafranov shift for stabilization

ITB Barrier Expands with Expansion of Region Where ExB Shearing Rate Exceeds Maximum Low-k Growth Rate

High-k ETG Modes Are Not Stabilized By ExB Flow Shear

• Normalized growth rate spectrum and shearing rate at ρ =0.7 for neon case

Summary

 Neon injection into a discharge with an existing ITB with an L-mode edge and co-NBI improved the overall performance in both ions and electrons and expanded the thermal and particle transport barriers.

 These results can be understood in terms of the suppression of low-k turbulence by enhanced ExB shearing rates caused by neon injection.

 Neon injection is an effective transport barrier control tool for co-NBI.

