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MOTIVATION

1. Finite orbit effects are of interest in tokamaks when
energetic particles are present, and when particles
are sufficiently close to the magnetic axis.  Fat orbits
enhance asymmetry between co- and counter-
moving particles and are important in considering
transport and rotation drive.

2. It is of interest to have a relatively simple but
realistic model in which fat orbits can be dealt with
analytically.  This would enhance understanding
and compliment particle simulation.*

3. Transport near the plasma axis is an unresolved
problem and analytic work is needed in this area.

*V.S. Chan, APS-Poster, BPI-131
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OUTLINE

(I) Summary of results of present work

(II) Description of model

(III) Analysis of orbit topologies and phase diagram

(IV) Comparison of analytic results with orbit code

(V) Summary and Conclusion
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(I) SUMMARY OF RESULTS OF
PRESENT WORK

(1) It is demonstrated that the orbit topologies and
phase space characteristics of large orbits are
radically different from thin orbit considerations with
marked asymmetry between co- and counter-moving
particles.  A concise and complete description of
phase space is obtained.

(2) It is shown that in considering large orbit effects,
it is advantageous to de-emphasize the poloidal
oscillatory motion, but emphasize the radial
oscillatory motion because large orbit effects are
automatically included from this viewpoint.

(3) Analytic results are obtained for useful time-
averaged physical quantities and compare well
with orbit code.
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(II)  DESCRIPTION OF MODEL

● Circular low-β tokamak of constant   qs
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● Three constants of motion
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● Three dimensionless parameters
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● Orbits:  ε = r
R0

ε2 − ηζ( )2
= ηE αp + 1+ αp( )εcosθp[ ] (I)
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(III) ANALYSIS OF ORBIT TOPOLOGIES
AND PHASE DIAGRAM

● Orbit topologies are completely determined by solving for
Eq. (I) at   θp = 0 and π

  
ε2 − ηζ( )2

= ηE αp ± 1+ αp( )ε[ ] (II)

     or g± = ηE ε 1+ αp( ) ± ε2 − ηζ( )2
− ηEαp







= 0 (III)

● Four regions of phase space

(I) Four real roots   {ε0 ,ε3 ,−ε2 ,−ε1};   {−ε2 ,ε3} for
co-passing particles,   {ε0 ,−ε1} for counter-passing
particles

(II) Small energy and pitch angle   αp-trapped particles with

two real roots   {ε0 ,ε3} and two complex conjugate roots

  {−ε1,−ε1*}

(III) and (IV)  Co-passing particles only at high energies with
two real roots   {ε0 ,ε3} and two complex conjugate roots

Disappearance of trapped-passing boundary implies
significant asymmetry between co- and counter-particles
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● Solutions of Eq. (II)

Define ηζ by low-field equatorial location of co-passing
particle

  ηζ ≡ ε0
2 − ηE[αp + (1+ αp )ε0 ]

  
αT ≡ 3
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(b) In regions (II), (III), and (IV), there are two real roots

  {ε0 ,ε3} and two complex conjugate roots  {ε1,ε1*}
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● Phase-space boundaries

(a) Trapped-Passing boundary and boundary for potato
orbits
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,  αT < 1

(b) Boundary of phase-space at high  αE  
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(IV) ANALYTIC CALCULATION OF
ORBIT AVERAGED QUANTITIES

● Since radial orbit size is important, consider calculating
orbit averaged quantities by emphasizing radial
oscillations:

〈A〉 = 1
T ∫

dψp

ψ̇p
A

  
T = ∫

dψp

ψ̇p

One can show that for x = ε2  x = ε2 x1 = εi
2( )

  
T = 8qs

2

Ω0
∫ dx

g+ g−

or T = 8qs
2

Ω0
g1K(k) (IV)

—   Trapped particles:

g1 = 1

A0A3

  A0,3
2 = x0,3 − x1r( ) + x1i

2

  
k2 = (x0 − x3 )2 − (A0 − A3 )2

4A0A3



281-00-10

—   Passing particles:  let  yij = xi − xj,

  
g1 = 2

y02 y13

  
k2 =

y01y23

y02 y13

● Calculation of   〈φ̇〉 and   〈ψp 〉 radial size is useful
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(V)

—   Passing particles (“+” = co, “–” = counter)
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— Trapped particles

Write   ε3 = ε0 1− ∆R( )
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SUMMARY AND CONCLUSIONS

1. In a simple tokamak geometry, we analyzed the orbit
topology in the regime where the orbit width is not small
compared with the minor radius.  A complete phase
diagram can be deduced which concisely describes the
whole phase space.  The results differ markedly from thin
orbit theory, and indicate strong asymmetry between the
co- and counter-moving particles.

2. When the orbit is fat, one must include the orbit width in
doing analytic calculations.  a reasonable approach is to
emphasize the radial oscillation of the particles rather than
the poloidal oscillations.  In doing so, we find that the
equations of motion reduce to quadratures in the simple
model considered.  One is then able to solve completely
for the time averaged quantities such as the poloidal flux
function and the toroidal angular precession.  It then
appears advantageous to consider transport of ions as
transport of radial oscillators.

3. Analytic formulae for time averaged toroidal precession
and the poloidal flux function are obtained which agree
reasonably well with particle codes.  In particular, the
energy dependence of the oscillator constant, k, is
verified.


