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Introduction QTYUIOP

The Gyrokinetic-Maxwell (GKM) equations lay a �rm but computation-

ally challenging foundation for the investigation of microinstabilities and

anomalous transport in fusion plasmas.

This poster describes GYRO � a nonlinear, electromagnetic, �nite-�

gyrokinetic code that incorporates a grid representative of real tokamak

geometry.

Eventually, GYRO will contain all physics of low-frequency (! < !ci)

plasma turbulence, assuming only that the ion gyroradius is less than

the magnetic �eld gradient length.
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Introduction QTYUIOP

The decision to pursue a full-radius code was made in order to

B quantify avalanches and action-at-a-distance e�ects;

B describe �nite-�� diamagnetic velocity shear stabilization of turbu-

lence, where �� � �=a; and

B capture enough physics so that comparison of thermal di�usivities

obtained from simulation can be directly compared with experiment.
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Introduction QTYUIOP

GYRO is distinguished from existing full-radius microinstability codes

by its continuum approach, which solves the GKM equations on a �xed

5-dimensional grid rather than along characteristics (particle approach).

The perceived advantages of the continuum method are:

B implicit treatment of electron parallel motion, and

B absence of statistical noise in long-time solutions.

The perceived disadvantage is the substantially increased algorithmic

and coding complexity.
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Introduction QTYUIOP

GYRO is also radially non-spectral, unlike existing continuum microin-

stability codes. A radial grid is used in place of kr = �i@=@r, so that

eventually a �nite �r-annulus with nonperiodic radial boundary condi-

tions and �nite-�� may be simulated. This is much more di�cult than

the usual spectral approach using �ux tubes, since the spectrum of 1D

linear modes become a 2D mode for a given n.

In the �rst stage of code operation and validation reported here, pro�le

variation is turned o� and periodic radial boundary conditions are used

to benchmark with the spectral, vanishing-�� �ux-tube codes GKS and

GS2. This paper is a report on the �rst stage. The second stage will

operate with realistic nonperiodic radial boundary conditions, general

pro�le variation, and internal n = 0 sources (to prevent pro�le relax-

ation).
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Model Equations QTYUIOP

Using action-variational methods [Littlejohn], one can derive the guiding-

center equations of motion including lowest-order drift e�ects

_R =
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k

�
vkB
� � c ^b� E�
�
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_W =

e
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B�
k

B
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Model Equations QTYUIOP

R = x� � is the guiding center position, W is the unperturbed energy,

and � is the (conserved) magnetic moment. Angle brackets indicate

gyroaverages. The conservative form of the gyrokinetic equation (with

F the total guiding center distribution) follows automatically

@
@t
(JF) +
@

@R
�

_RJF
�

+

@
@W

�
_WJF
�

= 0 : (4)

J � (v=vk)B
�

k

is the velocity-space Jacobian. The perturbed B-�eld is

ÆB = rAk � ^b+Akr� ^b ' rAk � ^b+

Ak
B

^b�rB (5)

where A = A0 + Ak
^b. The approximate equality is valid in the limit

of low-�. According to the gyrokinetic ordering, the second term in

Eq. (5) is smaller than the �rst. It is therefore ignored in the kinetic

equation, as are terms containing @^b=@t.
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Model Equations QTYUIOP

Now, take ^b along the equilibrium �eld. Then,

@F
@t
+ vg �
@F

@R
� e

m
 

vg � rh�i+
vk

c
@hAki

@t

!
@F

@W

= 0 ; (6)

where vg � vk
^b+ vd+ vE+ (vk=B)rhAki � ^b, and

vd �
v2
k

+ �B

B2

^b�rB and vE �
c

B
^b�rh�i (7)

Split F into F = F0+f , where F0 represents the macroscopic equilibrium,

and f represents microscopic �uctuations (smaller by one order in ��).

Ignore nonlinearities connected with the third term on the LHS of (6)

(down one order in ��).

7 j. candy



Model Equations QTYUIOP

The equation describing microscopic �uctuations (for each species) is

@g
@t
+ (vk^b+ vd) �
@g

@R

= �@F0
@W

@hUi
@t

� 1
B
^b�rhUi � r(F0+ g) (8)

where f = h�i @F0=@W + g and U � � � vkAk. The �eld evolution is

subsequently determined by a sum over all species (subscript s) in the

gyro-Maxwell equations:

�r2�(x; t) = 4�
X

s

ezs
Z

d3v
�

zse�(x)
@F0s

@W

+ hgis
�

; (9)

�r2Ak(x; t) = 4�
X

s

ezs
Z

d3v vkhgis : (10)

Above, hgi is evaluated at the plasma position x (consistent to lowest

nontrivial order in �� with Hahm, Brizard, etc).
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Coordinate System QTYUIOP

GYRO uses a real-space coordinate system (r; �; �), where r is a �ux-

surface label (^b � rr = 0), � is an angle in the poloidal plane, and

� � � �
Z
�

0

d� ^q ; (11)

with ^q � (^b � r�)=(^b � r�) the local safety factor. � is chosen to be

constant along a �eld line (^b � r� = 0). The parallel derivative in these

coordinates is simply ^b � r = (^b � r�)@�. In this article, the bare symbol

q is reserved for the �ux-surface-averaged safety factor.

q � 1
2�

Z 2�
0

d� ^q (12)
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Fluctuating Fields QTYUIOP

We expand (�;Ak; g) as Fourier series in �. For example, the electro-

static potential is written
� =

X
n

�n(r; �)e
�in� (13)

Although the physical �eld, �, is 2�-periodic in �, this representation

has the implication that the Fourier coe�cients, �n, are nonperiodic,

and satisfy the phase condition �n(r; �) = �n(r;��) exp[�2�inq(r)].

Since � is real, the coe�cients satisfy ��n = ��n.
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Normalization QTYUIOP

dimension unit description

Length a minor radius

Velocity cs sound speed (
q

Te(0)=mi)

Mass mi ion mass

Time a=cs

Temperature Te(0) electron temperature

Introduce renormalized densities and distribution functions ^ns and ^gs

according to ns = ^nsne(0) and gs = ^gsne(0)FM
s .

FM
s � e�W=Ts=(�3=2v3s ) and Ts(r) = msv2s =2.

The equilibrium distribution is F0s = ns FM
s
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Velocity Space QTYUIOP

The velocity integrals in Eqs. (9) and (10) are rewritten in terms of the

energy, W , and pitch angle, � � �=W .

Use the identity
P

�(2�) dW d� = (m2vk=B) d
3v , where � � sgn(vk).

For each species, introduce the operator V , such that

Z
d3v FMf =

X
�

V �[f�] with V �[f ] � 1
2
p

�
Z
1

0

d� e��
p

�
Z 1

0

d(�B)f�p
1� �B

;

(14)

Above, � �W=T and
P

� V
�[1] = 1.
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Misc. De�nitions QTYUIOP
�D �
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4�ne(0)e2
; �e �
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B2
0=8�

; �s �
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eB0=mic
: (15)

For simple s� � equilibrium, we have

!� � k��s
"

1
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+ (�� 3=2)
1

LT
#

(16)

!
(1)

d

� k��s
2zT
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�
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2
!

[cos(�) + (s� � � sin �) sin(�)] (17)

!
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d � �i�s
2zT
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�

 
1� � ^B

2
!

sin � (18)

uk �

vk
qR0

(19)

^B � 1

1+ r=R0 cos �

(20)
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Time-Advance Algorithm QTYUIOP

Because we are solving a multidimensional PDE, and wish to take rel-

atively large timesteps, we resort to operator splitting. This allows us

to treat substeps with implicit or high-order explicit methods.

One full timestep constitutes the cycle: collision step ! nonlinear

step ! radial step ! poloidal step with �eld solve. While each of

the substeps modi�es g, only the poloidal step involves a change in �.

In this newsec we give only a description of the continuous equations

solved at each substep. The collision step, which solves for the response

due to pitch-angle scattering, is not discussed for the sake of brevity.

Moreover, the length of the present paper allows only an outline of the

numerical methods, discretized equations and parallelization algorithms

used in GYRO.
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Nonlinear Step QTYUIOP

We make a partial advance using the nonlinear terms only. In the bal-

looning limit, with circular �ux surfaces, the equation to be solved is

@t^gn =

i�sq
r

X
n0

h
nh^Ui
n0@r^gn�n0 � n0@r
�

^g
n0h^Uin�n0
�i

(21)

The discretization scheme, to a very good approximation, is designed

to satisfy the following entropic conservation law:

@
@t

Z
d�
Z

dr j^gj2 ! @
@t

X
n

Z
dr j^gnj2 � O(�t4) (22)

Centered �nite di�erences and the conservative form, Eq. (21), are

essential to obtain Eq. (22). In practice, at least �ve-point (fourth-

order) rules are used. The system of ordinary equations is then advanced

in time using a 4th-order RK method. Entropy is conserved to O(�t)5

in one nonlinear step.

15 j. candy



Radial Step QTYUIOP

The radial step ignores all but radial derivatives contained in the linear

terms. Physically, this accounts for the physics connected with the

radial derivative, !
(r)

d @r, in the curvature drift, !d = !
(1)

d + !
(r)

d @r

@t^g = i!
(r)

d

@r^g (23)

When !
(r)

d

is held �xed at the central radius (i.e., the ballooning limit),

solve the equation using a forward and backward Fourier transform in r.

This method has the added bene�t that at no extra expense we can add

hyperviscosity to eliminate the e�ects of electron Landau resonances in

the electron kinetic equation. Banded-diagonal solvers are used in the

nonperiodic case where radial variation is accounted for.
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Poloidal Step QTYUIOP

The poloidal step ignores derivatives with respect to pitch angle, energy

and radius. Nonlinearities are also neglected. We use a phase-space

conserving di�erencing scheme to avoid passing-particle instability of

n= 0 modes. The normalized equations are

�
@t+ uk@�
�

^g = ^�@th^Ui+ i!
(1)

d

^g � i^n!�h^Ui ; (24)

�2Dr2�+
X

s

zs
X

�

V �[h^gi�s ] +
X

s

zs^�s� = 0 (25)

2�2s
�e
r2Ak+
X

s

zs
X

�

V �[vkh^gi�s ] = 0 ; (26)

with ^� � z^n=T . These equations are solved implicitly for both electrons

and ions to yield a partial advance of ^g and (�;Ak). An implicit �eld-

solve is used to avoid the Courant limit on timestep imposed by the

electron parallel operator
�

@t+ uk@�
�

^ge.
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Radial Grid QTYUIOP

For a given choice of equilibrium and reference mode number nref,

ballooning modes oscillate at wavelengths kr = (p + `=`�)k�, where

k� � 2�skref
�

and kref
�

= nrefq=r. A given mode has a �xed integer

values of `, with 0 � ` < `�, and runs over all integral values of p. The

most unstable mode has `= 0, and more stable modes ` > 0.

Knowing k� and `�, we set the box length at L = 2�`�=k�. Numerically,

we retain only a �nite number of p-values for each mode (jpj � j�), since

the partial contribution to the eigenmode drops o� rapidly with each

successive p. Then, the number of radial gridpoints required to describe

`� ballooning modes at n = nref is nr = 2j�`�+1.
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Radial Grid QTYUIOP

A value for �s is also required � typically, we choose kref
�

�s � 0:3. Expe-

rience shows that for s � 1, it is generally su�cient to choose �ve k's

per ballooning mode (j� = 2), or equivalently nr = 4`�+1, where nr is

the number of radial gridpoints.

A linear calculation of only the most unstable mode requires `� = 1.

Nonlinear runs typically require `� = 24 (and at least ten values of n)

for proper saturation. A crucial feature of the code is that the code

timing and storage increase linearly with nr. This is a result of banding

methods which make use of the localized nature of gyroaverages and

derivatives in a realistic simulation box.

19 j. candy



Numerical problems QTYUIOP

There are numerous di�culties associated with a real-space radial grid.

The most was connected with n = 0 �eld-solve matrix � used in the

poloidal step. This matrix has a null eigenvalue for kr = 0. Although

we do not evolve the equilibrium (kr = 0; n= 0), the smallest values of

kr used in nonlinear simulations are prone to numerical instability which

appears as a result of the split radial and poloidal steps. We have cured

this instability using

B a conservative di�erencing scheme for Eq. (24)

B a two-stage (predictor-corrector type) method to improve the accu-

racy of the total linear step (radial plus poloidal). This ensures to

high accuracy the balance between the terms i!
(r)

d

@r^g and uk@�^g for

n = 0.
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Numerical Results QTYUIOP

To benchmark GYRO for �nite-n ballooning modes, we used the linear

electromagnetic solver GKS [Kotschenreuther]. The validity of GKS has

been rigorously established. The simulation results presented generally

share a common set of input parameter values (table below). When

exceptions occur, they are indicated. Below, n� is the number of energy

gridpoints, n� is the number of pitch angle gridpoints, and n� is the

number of gridpoints in poloidal angle. Because we multipoint methods

for radial integration and di�erentiation, we obtain much better than

second order accuracy.

parameter value parameter value parameter value

R=a 3.0 r=a 0.5 a=LT 3.0

a=LN 1.0 s 1.0 q 2.0

n� 5 n� 26 n� 32
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Numerical Results QTYUIOP

Electrostatic adiabatic electron case We perform one GYRO run

with a �ne radial grid (nr = 97), 15 toroidal modes (n= 0;5;10; : : : ;70),

and adiabatic electrons. The ky-spectrum is k��s = 0:0;0:05;0:1; : : : ;0:7.

Results agree with GKS.
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Numerical Results QTYUIOP

Electromagnetic ballooning modes GYRO is not a ballooning code,

but it's possible to reconstruct an equivalent ballooning-space solution

from the real-space one. The largest kr is damped to mimic the GKS

boundary condition, which eliminates the electron layer response.
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Numerical Results QTYUIOP

Electrostatic nonadiabatic electron parameter scan We use the

full nonlinear grid and do a scan of linear eigenmodes: (nr = 97),

nn = 15, box length L = 80�s. The results are very close to GKS runs

on case-dependent grids.
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Numerical Results QTYUIOP

Axisymmetric modes We can test the accuracy of axisymmetric

poloidal �ow decay for n = 0 modes. Results are in exact agreement

with Rosenbluth-Hinton theory.
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Nonlinear ITG QTYUIOP

GYRO fully operational for nonlinear, kinetic ions (ITG). We set the

grid resolution at nr = 97, L = 80�s, n� = 16, n� = 14, nn = 14,

k��s = 0;0:06; : : : ;0:78 and use (cs=a)�t = 0:1.
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Nonlinear ITG QTYUIOP
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Nonlinear ITG QTYUIOP
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Code Performance QTYUIOP

GYRO scales well up to the full capacity of the NERSC IBM RS/6000

SP and CRAY T3E-900 machines, as well as the GA Intel Beowulf

clusters. The maximum performance on the larger GA STELLA cluster

averages about 1/10th that of the full IBM SP.
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Progress and Conclusions QTYUIOP

Numerical benchmarking demonstrates that GYRO operates correctly

and e�ciently in �ux-tube mode, carrying with it the heavy infrastruc-

ture required for full-radius operation.

The use of banded multi-point methods for gyroaverages, nonlinear

derivatives and �eld-solves allows linear-in-nr code scaling.

Linear, electromagnetic comparisons with GKS show very good agree-

ment.

n= 0 modes behave in accordance with Rosenbluth-Hinton theory.

Results from nonlinear simulations give thermal di�usivities in rough

agreement with GS2.
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