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Introduction OzOGEMERALATOMICS

The Gyrokinetic-Maxwell (GKM) equations lay a firm but computation-
ally challenging foundation for the investigation of microinstabilities and
anomalous transport in fusion plasmas.

This poster describes GYRO — a nonlinear, electromagnetic, finite-5

gyrokinetic code that incorporates a grid representative of real tokamak
geometry.

Eventually, GYRO will contain all physics of low-frequency (w < wg;)
plasma turbulence, assuming only that the ion gyroradius is less than
the magnetic field gradient length.
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Introduction OzOGEMERAL ATOMICS

The decision to pursue a full-radius code was made in order to

> quantify avalanches and action-at-a-distance effects;

> describe finite-px diamagnetic velocity shear stabilization of turbu-
lence, where pyx = p/a; and

> capture enough physics so that comparison of thermal diffusivities
obtained from simulation can be directly compared with experiment.
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Introduction

GYRO is distinguished from existing full-radius microinstability codes
by its continuum approach, which solves the GKM equations on a fixed
5-dimensional grid rather than along characteristics (particle approach).

The perceived advantages of the continuum method are:
> implicit treatment of electron parallel motion, and

> absence of statistical noise in long-time solutions.

The perceived disadvantage is the substantially increased algorithmic

and coding complexity.
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Introduction OzOGEMERALATOMICS

GYRO is also radially non-spectral, unlike existing continuum microin-
stability codes. A radial grid is used in place of k = —id/0r, so that
eventually a finite Ar-annulus with nonperiodic radial boundary condi-
tions and finite-px may be simulated. This is much more difficult than
the usual spectral approach using flux tubes, since the spectrum of 1D
linear modes become a 2D mode for a given n.

In the first stage of code operation and validation reported here, profile
variation is turned off and periodic radial boundary conditions are used
to benchmark with the spectral, vanishing-psx flux-tube codes GKS and
GS2. This paper is a report on the first stage. The second stage will
operate with realistic nonperiodic radial boundary conditions, general
profile variation, and internal n = 0 sources (to prevent profile relax-
ation).
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Model EquatiQnS OzOGEMERALATOMICS

Using action-variational methods [Littlejohn], one can derive the guiding-
center equations of motion including lowest-order drift effects

1

R — B—W(U“B*—CBXE*), (1)
w o= S g g (2)
m B ’

where v = b-R = v (R, W, p) and B = b-B*. The starred fields, with
A*= A + mcv||B/e, are

B* =V x (A™) and E* = —V({(9¢) (3)
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Model EquatiOnS OzOGEMERALATOMICS

R = x — p is the guiding center position, W is the unperturbed energy,
and p is the (conserved) magnetic moment. Angle brackets indicate
gyroaverages. The conservative form of the gyrokinetic equation (with
F' the total guiding center distribution) follows automatically

%(jF)-I—%(RJF)-I—%(WjF) =0. (4)

J = (v/v“)Bﬁ is the velocity-space Jacobian. The perturbed B-field is
_ _ A -
6B=VA||><b-|-A||V><bf:VA||><b-|—§”b><VB (5)

where A = Ag + A”B. The approximate equality is valid in the limit
of low-3. According to the gyrokinetic ordering, the second term in
Eqg. (5) is smaller than the first. It is therefore ignored in the kinetic
equation, as are terms containing 9b/ot.
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Model EquatiOnS OzOGEMERALATOMICS

Now, take b along the equilibrium field. Then,

OF OF e v 9{A))\ OF
- : _ LV =0,
ot TV R T m (Vg Ot e ) ow
where Vg = ”U”B —+ V(g —+ VE —+ (”U”/B)V<A”> X B, and
v|2| + uB c .
Vq = 52 b x VB and VE = Eb X V<¢>

(6)

(7)

Split Finto FF = Fy+f, where Fp represents the macroscopic equilibrium,
and f represents microscopic fluctuations (smaller by one order in p«).

Ignore nonlinearities connected with the third term on the LHS of (6)

(down one order in px).
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Model EquatiOnS OzOGEMERALATOMICS

The equation describing microscopic fluctuations (for each species) is

dFpd(U) 1.
. P X V)V tg)  (8)

dg ~ dg
o TIPEYa) R =

where f = (¢) 0Fp/0W + g and U = ¢ — v 4. The field evolution is
subsequently determined by a sum over all species (subscript s) in the
gyro-Maxwell equations:

—V2¢(X, t)

||

N

3
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+s) ()
—VQA”(X,t) — 47r2625/d3v’0”<g>5. (10)

Above, (g) is evaluated at the plasma position x (consistent to lowest
nontrivial order in px with Hahm, Brizard, etc).
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Coordinate System OzOGENERALATOMICS

GYRO uses a real-space coordinate system (r,6,a), where r is a flux-
surface label (b-Vr =0), 6 is an angle in the poloidal plane, and

)
aEC—/OdGcfi, (11)

with § = (b - V¢)/(b - V) the local safety factor. a is chosen to be
constant along a field line (b-Va = 0). The parallel derivative in these
coordinates is simply b-V = (B - V60)9y. In this article, the bare symbol
q is reserved for the flux-surface-averaged safety factor.

L [*" 06 12
1= - q (12)
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Fluctuating Fields <{> cenERaL aToMICS

We expand (qb,AH,g) as Fourier series in a. For example, the electro-
static potential is written

¢ = on(r,0)e " (13)

Although the physical field, ¢, is 2w-periodic in 6, this representation
has the implication that the Fourier coefficients, ¢,, are nonperiodic,
and satisfy the phase condition ¢n(r,7) = ¢n(r, —m) exp[—2ming(r)].

Since ¢ is real, the coefficients satisfy ¢ = ¢_y,.

10 j. candy




Normalization PO D

dimension unit description
Length a minor radius
Velocity Cs sound speed (\/TG(O)/mZ-)
Mass m; lon Mass

Time a/cs

Temperature | T¢(0) electron temperature

Introduce renormalized densities and distribution functions hs and gs
according to ns = fAsne(0) and gs = gsne(0)FM.

FM = e_W/TS/(W3/2vS3) and Ts(r) = msvd /2.

The equilibrium distribution is Fop, = ng F
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Veloci ty S pace ozo GENERAL ATOMICS

The velocity integrals in Egs. (9) and (10) are rewritten in terms of the
energy, W, and pitch angle, A= u/W.

Use the identity > ,(27) dW d\ = (m2v||/B) d3v, where o = sgn(v“).

For each species, introduce the operator V, such that

3 M or o o 1 > —€ d()\B)fJ
/dvF f= ZV [f7]  with  V7[f] = ﬁfo dee \[/ vV1=\B'’
(14)

Above, e = W/T and >, V7[1] = 1.
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Misc. Definitions Ll

\ :\/ Tc(0) _ ne(0)Te(0) e 8 (15)
b= 47ne(0)e2’ °T B8/87r 7 > eBg/mc
For simple s — a equilibrium, we have
= Egps | + (e — 3/2) (16)
wx = — € — —
* 6Ps L, Ly

B s (1 _ ?) [cos(0) + (56 — asin@)sin(8)]  (17)

Rg
22T \B
Wi = —ips ;O ’ <1 _ 7) sin 6 (18)
I~ 4Rg
. 1
B = (20)

14+ r/Rgcosé
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Because we are solving a multidimensional PDE, and wish to take rel-
atively large timesteps, we resort to operator splitting. This allows us
to treat substeps with implicit or high-order explicit methods.

One full timestep constitutes the cycle: collision step — nonlinear
step — radial step — poloidal step with field solve. While each of
the substeps modifies g, only the poloidal step involves a change in ¢.
In this newsec we give only a description of the continuous equations
solved at each substep. The collision step, which solves for the response
due to pitch-angle scattering, is not discussed for the sake of brevity.
Moreover, the length of the present paper allows only an outline of the
numerical methods, discretized equations and parallelization algorithms
used in GYRO.
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Nonlinear Step OzOGENERALATOMICS

We make a partial advance using the nonlinear terms only. In the bal-
looning limit, with circular flux surfaces, the equation to be solved is

815 = L1 (00,00t — 100 (G0 )] (21)

r
TL,

The discretization scheme, to a very good approximation, is designed
to satisfy the following entropic conservation law:

2/da/dr|§|2 N 22/dr|§n|2 ~ O(A (22)
ot ot %

Centered finite differences and the conservative form, Eq. (21), are
essential to obtain Eq. (22). In practice, at least five-point (fourth-
order) rules are used. The system of ordinary equations is then advanced
in time using a 4th-order RK method. Entropy is conserved to O(At)?
iIn one nonlinear step.
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Radial Ste D ozo GENERAL ATOMICS

The radial step ignores all but radial derivatives contained in the linear
terms. Physically, this accounts for the physics connected with the
radial derivative, wg“)a,a, in the curvature drift, wy = wél) —|—w((jr)8r

9 = iw'" 8-9 (23)

When w{” is held fixed at the central radius (i.e., the ballooning limit),
solve the equation using a forward and backward Fourier transform in r.
This method has the added benefit that at no extra expense we can add
hyperviscosity to eliminate the effects of electron Landau resonances in
the electron Kinetic equation. Banded-diagonal solvers are used in the
nonperiodic case where radial variation is accounted for.
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POIOidaI Step OzOGEMERALATOMICS

The poloidal step ignores derivatives with respect to pitch angle, energy
and radius. Nonlinearities are also neglected. VWe use a phase-space
conserving differencing scheme to avoid passing-particle instability of
n = 0 modes. The normalized equations are

(8 + uyp) § = @00 + iw§"§ — ifwa (D), (24)
A V24> 25 Y VG + Y zsas¢ =0 (25)
S o S
208 o or ot
3 \Y A”"‘ZZSZV [v(9)s] =0, (26)
e S o

with a@ = zA/T. These equations are solved implicitly for both electrons
and ions to yield a partial advance of g and (gb,A”). An implicit field-
solve is used to avoid the Courant limit on timestep imposed by the
electron parallel operator (at —|—u||89) Je.
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Radial G rid ozo CENERAL ATOMICS

For a given choice of equilibrium and reference mode number nref,
ballooning modes oscillate at wavelengths k, = (p + ¢/0+)k«, where
kv = 2mskl®™ and kT = n'®g/r. A given mode has a fixed integer
values of ¢, with 0 < £ < l«, and runs over all integral values of p. The
most unstable mode has ¢ = 0, and more stable modes ¢ > 0.

Knowing ks« and ¢«, we set the box length at L = 2wl /k«. Numerically,
we retain only a finite number of p-values for each mode (|p| < j«), since
the partial contribution to the eigenmode drops off rapidly with each
successive p. Then, the number of radial gridpoints required to describe
¢« ballooning modes at n = n"®" is n, = 2j.ls + 1.
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Radial G rid ozo CENERAL ATOMICS

A value for ps is also required — typically, we choose Icgefps ~ 0.3. Expe-
rience shows that for s ~ 1, it is generally sufficient to choose five k's
per ballooning mode (jx = 2), or equivalently n, = 44, 4+ 1, where n, is
the number of radial gridpoints.

A linear calculation of only the most unstable mode requires /. = 1.
Nonlinear runs typically require ¢/« = 24 (and at least ten values of n)
for proper saturation. A crucial feature of the code is that the code
timing and storage increase linearly with n,. This is a result of banding
methods which make use of the localized nature of gyroaverages and
derivatives in a realistic simulation box.
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Numerical pr0b|ems OzOGEMERALATOMICS

There are numerous difficulties associated with a real-space radial grid.
The most was connected with n = 0O field-solve matrix — used in the
poloidal step. This matrix has a null eigenvalue for k- = 0. Although
we do not evolve the equilibrium (k, = 0,n = 0), the smallest values of
kr used in nonlinear simulations are prone to numerical instability which

appears as a result of the split radial and poloidal steps. We have cured
this instability using

> a conservative differencing scheme for Eq. (24)

> a two-stage (predictor-corrector type) method to improve the accu-
racy of the total linear step (radial plus poloidal). This ensures to

high accuracy the balance between the terms iwc(f) Org and u||89§ for
n = 0.
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Numerical Results

To benchmark GYRO for finite-n ballooning modes, we used the linear
electromagnetic solver GKS [Kotschenreuther]. The validity of GKS has
been rigorously established. The simulation results presented generally
share a common set of input parameter values (table below). When
exceptions occur, they are indicated. Below, ne is the number of energy
gridpoints, ny is the number of pitch angle gridpoints, and ng is the
number of gridpoints in poloidal angle. Because we multipoint methods
for radial integration and differentiation, we obtain much better than
second order accuracy.

21

parameter | value | parameter | value | parameter | value
R/a 3.0 r/a 0.5 a/Ly 3.0
a/Lp 1.0 s 1.0 q 2.0
Te 5 )\ 26 Ty 32
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Numerical Results OzOGEMERALATOMICS

Electrostatic adiabatic electron case We perform one GYRO run
with a fine radial grid (n, = 97), 15 toroidal modes (n = 0,5,10,...,70),
and adiabatic electrons. The ky-spectrum is kgps = 0.0,0.05,0.1,...,0.7.
Results agree with GKS.
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Numerical Results
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Electromagnetic ballooning modes GYRO is not a ballooning code,
but it's possible to reconstruct an equivalent ballooning-space solution
from the real-space one. The largest k, is damped to mimic the GKS
boundary condition, which eliminates the electron layer response.
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Numerical Results OzOGEMERALATOMICS

Electrostatic nonadiabatic electron parameter scan We use the
full nonlinear grid and do a scan of linear eigenmodes: (n, = 97),
nn, = 15, box length L = 80ps. The results are very close to GKS runs
on case-dependent grids.
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Numerical Results OzOGEMERALATOMICS

Axisymmetric modes We can test the accuracy of axisymmetric
poloidal flow decay for n = 0 modes. Results are in exact agreement
with Rosenbluth-Hinton theory.
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Nonlinear IT G OzOGENERALATOMICS

GYRO fully operational for nonlinear, kinetic ions (ITG). We set the
grid resolution at n, = 97, L = 80ps, ng = 16, n) = 14, n, = 14,
kgps = 0,0.06,...,0.78 and use (cs/a)At =0.1.
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Nonlinear IT G OzOGENERALATOMICS
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Code Performance +{> GENERAL ATOMICS

GYRO scales well up to the full capacity of the NERSC IBM RS/6000
SP and CRAY T3E-900 machines, as well as the GA Intel Beowulf
clusters. The maximum performance on the larger GA STELLA cluster
averages about 1/10th that of the full IBM SP.
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Progress and Conclusions < ceneraL aromics

Numerical benchmarking demonstrates that GYRO operates correctly
and efficiently in flux-tube mode, carrying with it the heavy infrastruc-
ture required for full-radius operation.

The use of banded multi-point methods for gyroaverages, nonlinear
derivatives and field-solves allows linear-in-n, code scaling.

Linear, electromagnetic comparisons with GKS show very good agree-
ment.

n = 0 modes behave in accordance with Rosenbluth-Hinton theory.

Results from nonlinear simulations give thermal diffusivities in rough
agreement with GS2.
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