Abstract Submitted
for the DPP00 Meeting of
The American Physical Society

Sorting Category: 6.1.0 (Theoretical)

Animation of Drift Ballooning Modes and Zonal Flow Turbulence

J. CANDY, R.E. WALTZ, M.N. ROSENBLUTH, General Atomics — It is now well known that high-\textit{n} drift ballooning modes non-
linearly generate toroidally symmetric (\textit{n} = 0) modes (so-called “zonal flows”) with radial variation. The sheared \textit{E} \times \textit{B} motion from these zonal flows in turn stabilizes the high-\textit{n} modes that cause radial transport. If the zonal flows are collisionally damped, the level of transport will typ-
ically increase. This predator-prey picture is believed to represent the nonlinear saturation mechanism of high-\textit{n} turbulence in tokamaks. In this poster we present a continuous stream of animations from the con-
tinuum gyrokinetic code GYRO to illustrate drift-balloning modes and zonal flows in linear states and in fully developed states of ion temperature gradient turbulence. We show rescaled flux tube simulations (where ed-
dies shrink as the relative gyroradius decreases) as well as movies of the self-consistent zonal flows extracted from the full nonlinear simulation.

1Work supported by the U.S. DOE under Grant DE-FG03-95ER5409 and additionally by the DOE/OFES Plasma Sciences Advanced Com-
puting Initiative (PSACI) Microturbulence Project.

J. Candy
jeff.candy@gat.com
General Atomics

Date submitted: July 12, 2000
Electronic form version 1.4