SENSITIVITY STUDIES OF TEARING MODE STABILITY CALCULATIONS

D.Brennan[°], M.Chu¹, S.Kruger², R.La Haye¹, L.Lao¹, T.Strait¹, T.Taylor¹, A.Turnbull¹

> Oak Ridge Institute of Science and Education ¹General Atomics, San Diego, CA ²SAIC, San Diego, CA ^rCurrently at General Atomics, San Diego, CA

Abstract

For high β , highly shaped plasmas in the DIII-D tokamak, the value of the tearing mode stability index Δ ' calculated at a rational surface can depend sensitively on the pressure and current profiles when an ideal mode is near marginal stability in the equilibrium current profile parameter space. Using a single time slice of experimental data and fitting equilibria around a minimum in χ^2 , we show that an estimate of the error in Δ ' will be low when no ideal mode is present. Also, the Δ ' calculation will systematically indicate linear stability to tearing modes when a global ideal mode is present. Between these regions, near marginal stability for the global ideal mode, a pole in Δ ' exists as predicted by analytic theory $[\mu = (-D_i)^{1/2}]$ is near 0.5 at the rational surface], and the proximity of the best equilibrium fit to this pole in parameter space is crucial to the accuracy of the tearing mode stability calculation.

OUTLINE

- The linear stability of resistive modes is calculated numerically and analytically, and the theoretical methods used are outlined.
- The equilibrium fitting parameters are varied around a minimum in χ^2 , and Δ ' is calculated at each rational surface individually, using PestIII and Tear codes.
- A low q_{min} sawtoothing ELMing H-Mode shot and an Advanced Tokamak (AT) high q_{min} ELMing H-Mode shot are analyzed in this way, and the results are compared.
- Poles in Δ' exist in parameter space for the low q_{min} shot while the calculation is more robust for the high q_{min} shot.
- The effect of residual error from the iterative numerical solution is also studied.
- Stability analyses of highly accurate kinetic efits are compared to experimental measurements near the onset of tearing modes, and when no tearing modes exist.

THE LINEAR TEARING STABILITY CALCULATION METHOD

In cylindrical geometry, the stability equation becomes Newcomb '60

$$L\xi \equiv \frac{d}{d\psi}f\frac{d\xi}{d\psi} - g\xi = 0 \tag{1}$$

In toroidal geometry, the general form for the PestIII numerical method is

Dewar and Pletzer '90,'91

$$L\xi \equiv -(\partial_{\psi}\mathcal{D}_{\theta} + \mathcal{Q}^{\dagger})\mathcal{G}(\mathcal{Q} + \mathcal{D}_{\theta}\partial_{\psi})\xi + \mathcal{K}\xi = 0$$
⁽²⁾

where
$$\mathcal{D}_{\theta} \equiv \partial_{\theta} - inq$$
 (3)

For a $m\gg 1$ approximation, an analytical approach can be applied Hegna '94

$$\lambda = -\frac{Iq\mu_0\tilde{\sigma}'}{2mq'}\frac{1}{\sqrt{\tilde{g}^{\chi\chi}\tilde{g}^{\psi\psi}}} \tag{4}$$

$$\Delta_0' = 2m\sqrt{\tilde{g}^{\chi\chi}}\lambda\pi\cot(\lambda\pi) \tag{5}$$

In general these methods are highly sensitive to the equilibrium profiles near the rational surface, and their stability predictions can differ.

 We aim to determine the uncertainty in ∆' in these methods, and to compare our best results to experimental data.

- We estimate the uncertainty in Δ ' by varying profiles within the constraints of the experimental data.
- Constructing a single parameter family of equilibria by varying the location of the intermediate knot in a 3 knot cubic spline representation of the current profile, minimizing χ^2 each time.
- Terms that are critical to the uncertainty and stability analysis are calculated, as well as diagnostic information, such as the differential change in equilibria with the fitting parameter,

$$\frac{\triangle \psi_{total}}{\triangle \psi_{kp}} = \frac{\sum_{i,j} \psi(r_i(k-1), z_j(k-1), k) - \psi(r_i(k-1), z_j(k-1), k-1)}{\psi_k^{kp} - \psi_{k-1}^{kp}}$$

the ratio j'/q' at the rational surface, and the location of the rational surface.

THE ORIGINS OF 3/2 TEARING MODE IN ELMING H MODE SHOTS IS THOUGHT TO BE NEOCLASSICAL

Δ ' HAS A POLE (IN PESTIII) IN THE KNOT LOCATION SPACE FOR 3/2 (ONSET) IN AN ELMING H-MODE SHOT

Δ' HAS POLES (IN PESTIII) IN THE KNOT LOCATION SPACE ALSO FOR 2/1 (NOT OBSERVED) IN AN ELMING H-MODE SHOT

PROFILES CHANGE MODERATELY AT RATIONAL SURFACE WITH THE CHANGE IN KNOT POSITION

POLE LOCATIONS MARK THE POINT WHERE IDEAL MODES BECOME UNSTABLE, MAKING THE TEARING MODE CALCULATION INDETERMINATE

THE D_I AND D_R PROFILES CHANGE WITH FITTING PARAMETERS CAUSING D_I >0 AT A RATIONAL SURFACE

TEAR RESULTS SHOW THAT THE MAXIMUM IN λ CORRESPONDS TO PESTIII POLE LOCATION (HEGNA '94 TANH POLE)

ACCURATE TEARING MODE CALCULATIONS AGREE WITH EXPERIMENT IN RELATIVE AMPLITUDES

IN HIGH QMIN AT SHOTS, NO POLES ARE ENCOUNTERED AND THE CALCULATIONS ARE MORE ROBUST

HOWEVER, EVEN IN HIGH q_{min} AT SHOTS, MARGINAL STABILITY CALCULATIONS CAN BE INNACURATE

98549.02050 3/1

HIGH $q_{min}\,\text{AT}$ SHOTS SHOW SIMILAR PROFILE DEPENDENCE, WITH VERY DIFFERENT RESULT

RESIDUAL ERROR MUST BE BELOW 1E-4 FOR RELIABLE STABILITY RESULTS

The Grad Shafranov residue of the numerical solution in EFIT is the residual error, which can cause deviations in Δ ' above 1e-4.

TEARING MODES IN AN AT PLASMA ARE DETERMINED TO BEGIN CLASSICALLY

* Early times show saturated low amplitude islands and positive deltaprime
* As the shot progresses, qmin decreases, large 2/1 deltaprime causes island growth
* The saturation may depend on the reduced deltaprime and helically perturbed J_{bs}

ACCURATE CALCULATIONS CAN BE USED TO CONFIRM THE STABILITY OF TEARING MODES

CONCLUSIONS

• Local pole increases sensitivity of Δ ' to equilibrium fitting parameters in a high Beta,

low q_{min} elming H-mode shot

Two types of poles exist:

Parity selection of the eigenvectors where $\Delta' \text{ OR } \Gamma' \rightarrow \infty$

Ideal marginal stability, where Δ ' AND Γ ' $\rightarrow \infty$.

The poles shown are from the ideal modes due to low qmin.

Equilibrium profiles of these cases show small, continuous variation

Pseudo analytical calculations for 3/2 mode shows qualitative agreement with numerical calculations.

• The need for good kinetic equilibrium fits with MSE and Thompson data is clear The degree of error and resolution necessary in these solutions is only 1e-4 as indicated by the reduction of standard deviation.

Most of the error in Δ ' calculations originates from fitting errors and not from residual error.

A high q_{min} AT shot shows no pole in the equilibrium parameter space and the best

calculations on this shot are in agreement with experiment

The Δ ' calculations are robustly positive for the 2/1 and 3/1 modes, although the magnitude depends strongly on the fitting parameters.

 Δ ' calculations using a time series of high resolution kinetic efits indicate that tearing modes in this AT shot are linearly unstable and not Neoclassical.

A comparison to the time dependent frequency spectrum details of this shot agrees well with which modes are unstable, and when.

FUTURE WORK

Non-Linear Studies with NIMROD

Saturation amplitudes will be compared to linear predictions Resistive wall mode seeding of tearing modes

• Linear Studies with NIMROD

Growth rate calculations, and comparisons with Δ '

• Linear Studies with TWISTR

The new TWISTR removes the singularities from the asymptotic matching methods, and should be more robust, stable and accurate.

ECCD mode stabilisation

Must Δ ' change, or is it enough to fill the J_{bs} deficit.

