Abstract Submitted for the DPP00 Meeting of The American Physical Society

Sorting Category: 6.6.2 (Experimental)

Spontaneous Improvement in Core Transport Near Rational q-Surfaces in DIII-D NCS Discharges¹ M.E. AUSTIN, K.W. GENTLE, U. Texas, K.H. BURRELL, C.C. PETTY, General Atomics, R.J. JAYAKUMAR, M.A. MAKOWSKI, LLNL, J.E. KIN-SEY, Lehigh, C.L. RETTIG, T.L. RHODES, UCLA — In DIII-D L-mode discharges with negative central shear, spontaneous transient or stepwise improvements in core confinement are often seen. These changes appear as upward jumps in temperature and toroidal rotation and for most cases are correlated with the minimum in q being near a low-order rational value. In some cases, for discharges with earlier NBI and higher beta, ITBs have been seen to form at q_{min} values other than rational. The largest increase in core confinement occurs just after q_{min} traverses 1.3-1.2 and persists until the first sawtooth crash. For q_{min} values near 3 and 2, at the start of the core T_e rise there are dips in temperature outside of the q_{min} radius and transient drops in edge D_{α} intensity. This phenomenon of transient improved confinement in DIII-D may result from good magnetic surfaces near rational q in a region of zero magnetic shear similar to results from RTP and FTU tokamaks.

¹Work under US DOE Contracts DE-AC03-99ER54463, W-7405-ENG-48, DE-FG03-86ER53225, and DE-FG03-97ER54415.

Prefer Oral Session X Prefer Poster Session	M.E. Austin austin@fusion.gat.com U. of Texas
Special instructions: 3rd Poster in Transport (Core) session (following Greenfield)	
·	

Date submitted: July 12, 2000 Electronic form version 1.4