Gas Puff Fueled H-Mode Discharges with High Energy Confinement Above the Greenwald Density on DIII-D

by

T.H. Osborne

for A.W. Leonard, M.A. Mahdavi, M.S. Chu, M.E. Fenstermacher,* C.M. Greenfield, R.J. La Haye, G.M. McKee,† T.W. Petrie, T.L. Rhodes,‡ G.M. Staebler, M.R. Wade^Δ

> *Lawrence Livermore National Laboratory †University of Wisconsin-Madison ‡University of California-Los Angeles △Oak Ridge National Laboratory

Presented at the American Physical Society Division of Plasma Physics Meeting Quebec City, Canada

October 23-27, 2000

APS2000/wj

- $n/n_{GW} = 1.4$ at $H_{ITER-89P} = 2$ with only D_2 puffing
- Continuous rise in n and W terminated by MHD not confinement loss
- High n_e with high H-factor associated with spontaneous peaking of n_e profile
 - anomalous particle pinch
 - stronger peaking at low central T
- Without n_e peaking reduced H at high density associated with reduced pedestal pressure with stiff temperature profiles.
 - p^{PED} reduction related to loss of edge second stable access
- Achievable pedestal density improves with decreasing B_T and triangularity at the X-point (n_e^{PED}/n_{GW} up to 0.9)

Benefits of good energy confinement at high n with gas puff fueling in H-mode based tokamak reactors

Reduced Peak Divertor Heat Flux

¹ITER Physics Basis, Nucl. Fusion, **39** 2577

Gas puff fueled discharges have performance comparable to pellet fueled and impurity enhanced high density discharges

- Single null with ∇B toward the x-point; triangularity $0 < \delta < 0.5$
- Reactor relevant $2.5 < q_{95} < 6.0$, most at $q_{95} = 3.2$, $I_P = 1.2$ MA

•
$$1 < \beta_{\rm N} < 2, (\beta_{\rm N} = 2 \text{ at } \overline{n}_e / n_{GW} = 1.3)$$

Highest density discharges show continuous increase in n and W

- Plasma stored energy, W, increases with density after an initial decrease following the start of gas injection
- n and W increase limited by MHD not confinement reduction
- Stored energy is comparable to low density discharge at the same heating power.

Peaking of the density profile compensates for loss of Hmode pedestal energy at high density

Profile evolution in high density discharge

- NATIONAL FUSION FACILITY SAN DIEGO
- H-mode pedestal density and temperature profile reach steady state while density profile peaks continuously after beginning of D₂ puffing

Reduction in W at high n can result from reduced p^{PED} with stiff temperature profiles

GKS indicates ITG is fastest growing mode

 GLF23 transport simulation give stiff T profile in agreement with experiment, no ITB

Reduction in H-mode pedestal pressure at high density

- Pressure reduction begins in the range $0.6 < n_e^{PED}/n_{GW} < 0.8$.
- At higher triangularity reduction begins at similar n_e^{PED}/n_{GW}
- Stronger reduction at higher triangularity

Loss of edge second stable access may account for the reduction in edge pressure gradient at high density

Density peaking is stronger under conditions that reduce central T or improve central confinement

- Low heating power \Rightarrow T₀ reduced and τ increased
- Higher Gas Puff \Rightarrow T₀ reduced through profile stiffness.
- **Low** $\mathbf{B}_{\mathrm{T}} \Rightarrow \mathrm{T}$ less peaked at lower q
- High Ip ⇒ T less peaked at lower q, τ increases with Ip.

High density discharges develop large particle pinch and have decreasing particle diffusivity

SAN DIEGO

0.8

Achievable H-mode pedestal density increases at low x-point triangularity and low B_T

• Transition condition to L-mode or Type III dependent on triangularity at X-point and B_T

Rising core p' may trigger MHD that ends good confinement phase of high density discharges

- ◆ Modes in region 1 < q < 1.5, m/n = 3/2, 4/3, 5/4, 6/5 .
- Both classical, $\Delta' r_s$, and neoclassical, $\epsilon^{1/2}\beta_P L_q/L_p/(r_s/w)$, tearing mode drives increase as p' increases due to n_e profile peaking

- ELMing H-mode discharges with good energy confinement, $H_{89P} = 2$ well above the Greenwald density, $n/n_G = 1.4$, were obtained with gas puffing
 - Limited by core MHD rather than transport or divertor effects
- Density profile peaking is important in obtaining high H factor
 - Peaking is enhanced under conditions that reduce central temperature.
 - He transport studies indicate an anomalous inward pinch
 - Neoclassical pinch would be very weak in a reactor scale tokamak however scaling of anomalous pinch is not known
- Confinement degradation at high density on DIII-D is related to the reduction in H-mode pedestal pressure.
 - Edge pressure gradient may be reduced at increased collisionality through loss of edge second stability at reduced bootstrap current.
 - Should not be important in a reactor scale tokamak

- Low triangularity of the x-point or low toroidal field increases the H-mode pedestal density that can be obtained without transition to a regime of reduced energy confinement.
- Termination event is possibly a NTM triggered by an increase in the pressure and density profile peaking.

MO1.011 M.A. Mahdavi, Confinement and Stability of H-mode Discharges above the Greenwald Limit
GP1.135 A. Leonard, Edge Pedestal and ELM Scaling with Density in DIII-D
GP1.136 T. Petrie, Recent High Density Experiments in Open and Closed Divertors in DIII-D

