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Outline, Summary
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n/ngyw = 1.4 at Hippgr ggp=2 with only D, puffing

Continuous rise 1in n and W terminated by MHD not
confinement loss

High n, with high H-factor associated with spontaneous peaking
of n, protile
o anomalous particle pinch

o stronger peaking at low central T

Without n, peaking reduced H at high density associated with
reduced pedestal pressure with stiff temperature profiles.
o pPEP reduction related to loss of edge second stable access

Achievable pedestal density improves with decreasing B and
triangularity at the X-point (n "*P/ng,, up to 0.9)



Benefits of good energy confinement at high n with gas
puff fueling in H-mode based tokamak reactors
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Gas puff fueled discharges have performance comparable to
pellet fueled and impurity enhanced high density discharges

bii-p
¢ Single null with VB toward the x-point; triangularity 0 < 0 < 0.5
¢ Reactor relevant 2.5 < q4< 6.0 , most at ¢, = 3.2, I, = 1.2 MA
¢ 1<PBy<2,By=2atn/n,=13)
¢ Most with divertor pumping . I
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Highest density discharges show
continuous increase in n and W Sii-g
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¢ Plasma stored energy, W, increases with density after an initial decrease following
the start of gas injection

¢ n and W increase limited by MHD not confinement reduction
¢ Stored energy is comparable to low density discharge at the same heating power.
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Peaking of the density profile compensates for loss of H-
mode pedestal energy at high density
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¢ Reduction in H
correlated with
reduction in pedestal
pressure

¢ Stored energy is

recovered with density 29

profile peaking
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Profile evolution in high density discharge
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¢ H-mode pedestal density and temperature profile reach steady state
while density profile peaks continuously after beginning of D, puffing
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Reduction in W at high n can result from
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¢ GKS indicates ITG is fastest growing mode

¢ GLF23 transport simulation give stiff T profile
Dill-D in agreement with experiment, no ITB
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Reduction in H-mode pedestal pressure

at high density

¢ Pressure reduction begins in the range 0.6 < n **/n, < 0.8.
¢ At higher triangularity reduction begins at similar n **P/n,,
¢ Stronger reduction at higher triangularity
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Loss of edge second stable access may account for the

MPa/(W/radian),MA/m*
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reductlon in edge pressure gradient at high density DiN-D
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With increasing edge density or v* < n/T2,

Calculated jyoor decreases = edge magnetic
shear increases, §=.5, — 2< Tt ?/ Jrors = SS access lost

ELM modes increase in n.

Pressure gradient is reduced from calculated limit for n=5
edge localized ideal kink/ballooning (GATO) to ideal nigh n
ballooning mode limit (BALOO).
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Density peaking is stronger under conditions that
reduce central T or improve central confinement 5, p
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¢ Low heating power = T, reduced and t ¢ Low B, = T less peaked at lower q

increased ¢ High Ip = T less peaked at lower q, T

¢ Higher Gas Puff = T, reduced through increases with Ip.
profile stiffness.

Increasing 8
IS Heating oED
j S— ol Power o Te/Te
1.0+ v .
Increasing Heating
Power
1 -
0.5r 20, -3
n_(10°7/m")
e
0.0 ! ! ! ! ! = 0 ! ! ! !
0.0 0.2 0.4 0 0.6 0.8 1.0 0.0 0.2 0.4 0 0.6 0.8 1.0

ssssssss

T. Osborne, APS 2000 11



High density discharges develop large particle pinch

and have decreasing particle diffusivity

¢

Inverse scaling with central temperature

suggests neoclassical pinch

Pinch speed measured from He density
profile evolution (CER) much larger

than neoclassical.
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Achievable H-mode pedestal density increases at low
x-point triangularity and low B
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 Transition condition to L-mode or Type II1
dependent on triangularity at X-point and B,
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Rising core p’ may trigger MHD that ends good

confinement phase of high density discharges

¢ Modes in region 1 <q<1.5, m/n =
¢ Both classical, A’r,, and neoclassical, 81/2BPLq/L

3/2, 4/3, 5/4, 6/5 .

increase as p’ increases due to n,_ profile peaking

dp/dp
- dp/dp(start of gas puff)

p/(rs/w), tearing mode drives
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Summary, Conclusions

¢
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ELMing H-mode discharges with good energy confinement, Hy,p, = 2 well
above the Greenwald density, n/n;= 1.4, were obtained with gas puffing

o Limited by core MHD rather than transport or divertor effects
Density profile peaking is important in obtaining high H factor

o Peaking is enhanced under conditions that reduce central temperature.

o He transport studies indicate an anomalous inward pinch

o Neoclassical pinch would be very weak in a reactor scale tokamak however
scaling of anomalous pinch is not known

Confinement degradation at high density on DIII-D is related to the reduction
in H-mode pedestal pressure.

o Edge pressure gradient may be reduced at increased collisionality through loss of
edge second stability at reduced bootstrap current.

— Should not be important in a reactor scale tokamak
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Summary, Conclusions
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¢ Low triangularity of the x-point or low toroidal field increases the H-mode
pedestal density that can be obtained without transition to a regime of reduced
energy confinement.

¢ Termination event is possibly a NTM triggered by an increase in the pressure
and density profile peaking.
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