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MODULATOR/REGULATOR POWER SYSTEM FOR THE ELECTRON CYCLOTRON HEATING FACILITY

UPGRADE AT DIII–D

A. Nerem, D.H. Kellman, S.G.E. Pronko and J.R. Valentine
General Atomics, P.O. Box 85608, San Diego, California 92186-5608

ABSTRACT

As part of the Electron Cyclotron Heating (ECH)
Facil i ty upgrade at  DIII–D an 8.4 MW
Modulator/Regulator Power System was designed and
constructed using acquired hardware from the Mirror
Fusion Test Facility (MFTF) at Lawrence Livermore
National Laboratory (LLNL) program as a foundation.1

Design changes in the feedback control of the
modulator/regulator (M/R) was motivated by the need for
improved output voltage regulation and improved
capability to modulate the output voltage consistent with
reference command signals containing modulation
patterns (typically square wave). The regulation
characteristics of the old ECH M/R power system had
previously constrained gyrotron operation due to marginal
voltage control loop stability and slow response to voltage
step changes. The technical approach was to develop
models of the circuit functions of the M/R controller from
the circuit diagrams, and then examine the control
characteristics using circuit analysis software.
MATLAB® Simulink® and Intusoft IsSPICE4® (SPICE)
codes were used to examine the control issues. These
analysis software tools were used to simulate the
controller functions and yielded identical results. The
SPICE circuit model was selected as a baseline for future
maintenance by the engineering staff. The analysis of the
controller model blocks provided the needed information
to modify the controller circuits. Changes made to the
controller included addition of a voltage feedback loop
around the grid driver amplifier for the power tetrode
control grid in the M/R, and changes to the feedback loop
compensation of the main error amplifier. The
implemented revised controller performance matches the
model performance predictions remarkably well. This
paper describes the circuit models, implementation of the
revisions to the controller, and recent operational results.

I.  BACKGROUND

The ECH system had initially utilized a M/R power
system acquired from the MFTF program in one 110 GHz

gyrotron system. The MFTF M/R was originally designed
for ion-source operation and had been converted to
negative polarity output for use in ECH operation. The
M/R operates from -105 kV dc voltage power and uses a
high voltage power tetrode as means to regulate its output
voltage to nominally –80 kV. The regulated output voltage
is applied to the ECH gyrotron cathode element. A new
M/R power supply was recently constructed and placed in
service. The need for precise regulation and output voltage
response from the new ECH M/R power system required
revisions to the original controller in the acquired
hardware from the MFTF program. Specifically, the
original controller was marginally stable when the M/R
was operated into a gyrotron load, and its dynamic
response to voltage command signals was too slow.

II.  DESIGN REQUIREMENTS

The target specifications for the new controller were
±0.25% voltage regulation accuracy, and a regulation
bandwidth sufficient to accommodate 20 kHz square wave
modulation of the output voltage with 15% amplitude
capability.

III.  CONTROLLER DESIGN

The controller circuit consists of an error amplifier,
lead compensation network, fiber-optic coupler and grid-
driver, regulator tetrode, output RLC network, and a
voltage-divider used for voltage feedback to the error
amplifier. The circuit arrangement of these blocks with the
final circuit values is shown in Fig. 1.

The controller design focused initially on
implementing proper dynamic range and gain for the
individual blocks. Simulation analysis was then used to
optimize the controller performance.

Gain and phase measurement data from the original
MFTF M/R grid-driver amplifier and fiber-optic link are
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Fig. 1.  Schematic block diagram of the M/R controller.

shown in Figure 2. This grid-driver was not well matched
in gain and dynamic range to the new control circuit. The
addition of a voltage feedback loop to the grid-driver
allowed utilization of the full dynamic range of the error-
amplifier and fiber-optic link, and substantially improved
the control bandwidth of this block [2]. This revision
proved to be key in achieving the voltage response
bandwidth of the M/R. The transfer function for the grid
driver was obtained from a curve-fit to the actual
measurement data obtained from the modified grid driver,
and includes a 1 µs delay inherent in the Dymec fiber-
optic link between the error amplifier and the grid driver.
The modified grid-driver circuit is shown in Fig. 3. Figure
4 shows the measured gain and phase characteristics of the
modified grid-driver. Figure 5 shows the measured gain
and phase data for the modified grid-driver compared to
the gain and phase plots of the derived (fitted) Laplace

100 Gain

Phase

G
ai

n 
– 

dB
 P

ha
se

 –
 D

eg
re

es

50

0
100 1000

Frequency – Hz

10000 100000 1000000

–50

–100

–150

Fig. 2.  Gain and phase characteristics of the original
ECHPS grid-driver. 
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Fig. 5.  Curve-fit to measured data for the modified grid-
drive and fiber-optic link.

IV.  SIMULATION MODELS

Laplace function blocks were used for faster
simulation analysis. The individual transfer function
blocks were derived from the circuit diagrams. MathCad®
was used to do the algebra involved in simplifying the
resulting expressions. The CQK200-4 tetrode model is a
non-linear function script derived from the manufacturers’
data sheet for this tube. This tetrode model assumes a
nominal load resistance of 888.9 ohms that is consistent
with the desired voltage response. A fixed 2000 V screen
grid bias is used in the tetrode model script. The Laplace
function blocks for the controller sub-circuits are
summarized in Table 1. The simulation models include
saturation limit blocks with appropriate maximum and
minimum voltage settings for the error amplifier and the
grid driver functions in order to maintain realistic bounds
for the voltages in the circuit. The Laplace function blocks
for the grid-driver, tetrode, output RLC network, and
voltage-divider were then adopted as realistic
representations of these circuit functions in the simulation
model that form the basis for the controller design

V.  SIMULATION RESULTS

Optimization of the M/R controller with respect to
gain and frequency response was then achieved through
the selection of the circuit component values in the error
amplifier and the lead network blocks. Aside from the
minor difference in format, the simulation models in
SPICE and MATLAB/Simulink were identical with one
minor exception. The MATLAB/Simulink model used a
fixed gain term in place of the tetrode model. The SPICE
model was run with the tetrode model script implemented.
Both software simulation tools provided essentially
identical results. The  SPICE simulation model for the
M/R controller is shown in Fig. 6.

Table 1.  Controller Function Blocks

Error Amplifier

G(s) 200
3 10

6
s 1

6.23 10
4

s 1
= − ⋅

⋅ − ⋅ +

⋅ − ⋅ +
Lead Network

G(s)
2.12 10

4
s 0

2.89 10
4

s 1
=

⋅ − ⋅ +

⋅ − ⋅ +

.439

Grid Driver + F/O link

G(s)
82

4.0.5 10
13

s
2

1.27 10
6

s 1
  sec TD=

−

⋅
−

⋅ + ⋅
−

⋅ +
+ 1 0. µ

Power Tetrode CQK200-4

Va 888.9 5.5 10
3

Vg1
Vg2

3.3

Vak

122
1.5= − ⋅ ⋅ − ⋅ + +





Va = anode voltage,
Vg1 = control grid voltage,
Vg2 = screen grid voltage,
Vak = anode-cathode voltage

Output RLC (snubber)
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5.0 10

12
s
2

4.5 10
6

s 1

1.0 10
11

s
2

4.5 10
6

s 1
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Voltage-divider

G(s)
5.98 10

7
s 1.0 10

4

5.68 10
3

s 1
=

⋅ − ⋅ + ⋅ −

⋅ − ⋅ +

The simulation results are shown in Figs. 7 and 8.
Figure 7 shows the gain and phase characteristics of the
M/R controller from this simulation, and Fig. 8 shows the
simulated square wave response.

VI.  DATA FROM M/R OPERATION

The experimental data from research operations with
the ECH 110 GHz gyrotron system shows that the M/R
performance is remarkably close to the simulation results.
Figure 9 shows a M/R pulse with 2 kHz square wave
modulation with the M/R operating into a resistive
dummy load. The upper trace shows the M/R output
voltage (20 kV/div), the middle trace shows the M/R
output current (50 A/div), and the bottom trace shows the
voltage reference command signal (10 kV/volt). An
expanded view examines a smaller time portion of the
waveforms in Fig. 10, allowing a closer look at the square
wave modulation effect. The 20 KHz modulation
capability has not yet been tested, but is anticipated to
meet the requirements. Figure 11 shows a regulation
measurement from the M/R operating with a gyrotron load
at –80 kV. The top trace in Fig. 11 is again the M/R output
voltage offset with an external precision voltage source in
order to allow the precise measurement of regulation
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Fig. 6.  SPICE model of the Mod/Reg controller.
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Fig. 8.  Simulation step response of the M/R controller.

accuracy. This measurement shows a 44 V peak-peak
regulation, and this performance actually meets and
exceeds the specification requirement. The middle trace in

Fig. 9.  M/R output waveform with 2 kHz square wave
modulation.

Fig. 10.  M/R output waveform expanded shows the 2 kHz
modulation waveform details.
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Fig. 11.  M/R regulation measurement.

Fig. 11 is the M/R output current into the gyrotron load
(20 A/div). The next lower trace is the voltage command
reference to the M/R controller. The bottom trace is the
error signal. The M/R is now being used in ECH
operations at DIII–D.

Experiments are being planned that will utilize the
M/R regulation and modulation capabilities to modulate
ECH power for electron transport physics experiments.
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