The DIII-D National Fusion Program: Five-Year Plan Overview

by D.N. Hill

Presented to the DIII-D Program Advisory Committee San Diego, California

April 24–26, 2018

THE DIII-D NATIONAL FUSION PROGRAM FIVE-YEAR PLAN 2019-2024

January 2018

Work supported by the U.S. Department of Energy under contract DE-CF02-04ER54698

D.N. Hill/DIII-D Program Advisory Committee/April 2018

Renewal Proposal For FY19 – 24 DIII-D Cooperative Agreement Submitted on January 26th

- Made possible by hard work from a dedicated, multi-institutional team
- Provides world-class facility for U.S.
 Fusion Program
- Positions the U.S. for a leading role in ITER research
- Informs U.S. Program planning for next-step experiments

Ready to move forward now!

The Recommendations of the 2017 DIII-D PAC Provided Valuable Guidance as We Prepared the New Five-Year Plan

- We appreciate your support of our high level view of the DIII-D program and its role
 - The DIII-D team, in their introductory presentations, articulated a vision for their program, which the PAC endorses
 - Research with an Energy Goal
 - Address challenges to achieving fusion energy
 - Scientific Excellence
 - Fastest route to success and developing predictive capability
 - World-Class Facility for U.S. Office of Science
 - Upgrades for access to new physics
 - Highly capable scientific & operations team
 - Train future generation of fusion experts
 - The DIII-D team also made it clear that ITER success continues to be their overarching top priority.
 We support this as well...
- "In terms of the program extending out to 2024 we found, early in the meeting, that greater clarity on the strategic priorities was needed, specifically
 1) key progress metrics through the 5-year planning period, and 2) key decision points."
 - This was kept in mind throughout the generation of the plan

The PAC also provided a number of detailed recommendations for each of our scientific areas... these were incorporated into our planning and we have included detailed responses from the DIII-D Experimental Science Division and Boundary Center as part of the materials provided

Topics Covered in this Talk

- PAC Charge
- Background, context, and recent events

• Major elements of the Five-year Program Plan

- Recent DIII-D Program Performance
- DIII-D users and International Collaborations

Charge to the 2018 DIII-D Program Advisory Committee

- The DIII-D Program has developed a Five-Year Research Plan for the years 2019-2024. We expect a DOE peer review in May. We seek the DIII-D Program Advisory Committee's advice on major elements of the plan and how best to present it
- Please consider the following as you review the three sections of the research plan (Core, Boundary, and Core-Edge Integration)
- Is the overall plan logical and coherent?
 - Are the individual elements clearly articulated?
 - Are there places where the technical basis could be strengthened? If so, how?
- Will the proposed research address key scientific and technical needs for ITER and the steady-state tokamak path to fusion energy?
 - Does the proposed research exploit the unique capabilities of the DIII-D facility? Are these capabilities clearly explained?
- Is the DIII-D program positioned to support the proposed research?
 - Do the proposed facility and diagnostic upgrades appropriately increase capabilities in support of the planned research?

DOE Ten-Year Perspective (2015–2025) and NAS Interim Report Centers on ITER for Realization of Next-step for U.S. Burning Plasma Research

NAS Interim Report: As a burning plasma experiment, ITER is a critical step along the path to advance the science and technology of a fusion power source.

Steady Progress on ITER and New Private-Sector Investment May Be Changing the Funding Situation for Fusion Research in the U.S.

ITER Mission "To demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes."

Evolving good news for fusion (Positive Congressional Hearings, Excellent Progress on ITER, Recent budget action, and increased private-sector investments)

Our Vision and Strategy Is Based on Scientific Excellence Leading to Fusion Energy Development

SAN DIEGO

DIII-D Research Addresses Key Challenges for Fusion In Support of U.S. DOE-FES High Priority Research

DIII-D Is a 1/4 Scale ITER

Integrated Steady-State Scenarios and Robust Boundary Solutions

DIII-D and International are Preparing the Basis for Successful ITER Operation Research Aims to Address Key Physics in an Integrated Manner

Present Five Year Plan Has Enabled Key Advances In Scenario Development, Control Tools, and Building Scientific Foundations

Detachment Physics, Divertor Closure,

5

Fully non-inductive with RMP-ELM suppression

- -Shattered pellets
- -Shell pellets

NATIONAL FUSION

10

ASIPP Power Supply

Next Five-Year Plan Builds Upon Previous Successful Upgrades to Provide A Highly Capable U.S. National Facility for the Future

- Long torus openings have been effective for making significant beam modifications while maintaining annual operating weeks
 - LTO1: 210° counter-lp beam, lower divertor extension (ASIPP)
 - LTO2: 150° Off-axis beam
 - LTO3: Co-Counter steerable off-axis beam(now!)
- Regular upgrades and modifications
 - Heating systems (e.g. ECH)
 - Coil systems (e.g. I-coils)
 - Divertor modifications (lower, SAS)
 - Power supplies (ASIPP "super supply")

Demonstrated capabilities to deliver proposed 5YP upgrades

LTO3 Provides Major Capability Improvements and Facility Refurbishments Under the Present Cooperative Agreement

 Install Toroidally Steerable Off-Axis Beam World's First!

LTO3 Provides Major Capability Improvements and Facility Refurbishments Under the Present Cooperative Agreement

210 Co-counter OANB #2:

Ready to begin on May 7th

- Install Toroidally Steerable Off-Axis Beam World's First!
- Optimize alignment of upper SAS tiles with associated diagnostic upgrades
- Motor-Generator Refurbishments (cables and cooling water)
- Replacement of two more NB Local Control Stations (GA/PPPL)
- Replacement of 150 beamline high-heat load internal components and installation of new calorimeter (GA/PPPL)
- ECH: continued commissioning new 1.5W 117GHz, repairing two 1MW 110 GHz tubes
- Top-launch ECH

Final Research Campaign in April To Test Shell Pellet Disruption Mitigation and Replica HFS-LHCD Launcher

Shell Pellet Injector Installed on DIII-D

- Si- and B-filled Si shells (from Inertial Fusion Technology under IR&D)
- Successfully injecting into DIII-D
- Up to three $\frac{1}{2}$ day sessions scheduled

MIT Replica Launcher Is in Place

- 3D Moly printing for replica
- Installed
- In place for 2 operating weeks
- Wide range of operation, including disruption studies

Unprecedented FY18 Mid-Year Funding Increase Enables Head Start on the Next DIII-D Five-Year Plan

- Essential refurbishments maintain safe and reliable operations with high availability
- Major upgrades provide compelling scientific opportunities for the US scientific community as we prepare for ITER
- Significant boundary diagnostic enhancements to develop the boundary solution for fusion energy

First time that DOE funding guidance matches the Five-Year Plan Funding

GA Renewal Proposal For FY19 – 24 DIII-D Cooperative Agreement Submitted on January 26th

 Existing Cooperative Agreement ends 	June 30, 2019
 Proposal Submitted to DOE 	January 26, 2018
• DOE Review Panel	May 22-26, 2018
 DOE review complete 	~ July 2018
 DOE Internal processing (formal cost review) 	~Jan 1 – June 30, 2019
 Cooperative Agreement funded 	July 1, 2019

Broad and Highly Collaborative Participation In Developing the DIII-D Five-Year Program Proposal for FY19 – 24

- 2016 Strategic planning workshop (Dec. 1-2, 2016)
 - initial brainstorming open to all program participants at all levels
- DIII-D Executive Committee Meetings (2016 2018)
- 2017 Program Advisory Committee (you)
- Co-authored by topical experts from many institutions (key contributors listed in each section)
- Informed by FESAC panel reports and 2017 Community workshops
- "Red Team" consisting of GA and outside experts reading the draft program plan (November 2017)
- Final edits completed early January, 2018

DIII-D 5 Year Program Planning for 2019-24 1-2 December 2016 America/Los Angeles timezone Overview Workshop Agenda Document sharing Thursday, December 1 Workshop Agenda Upload presentation Duration Title Time (min) List of ideas 08:45 ntroduction Idea Submission #145: DIII-D To Meet Critical Research Needs in the Path to Fusion Energy 09:00 Butterv 09:10 TEADY-STATE 10:55 09:10 160: Conceptual overview of steady-state research plan in the next five year phase Ferron 10 159: Tearing mode stable access to betaN required for fully noninductive operation through 09:20 Ferror proved ideal-wall stability marg 09:25 #149: Maintain and improve basics diagnostics for high-power and high-current scenarios 10 Turco #151: Add a diagnostic beam to DIII-D 09:35 Turco 09:40 167: Integration of Steady-State Core with High-Density Edge Petty 10 09:50 214: Steady-State Hybrids Petty 5 10 09:55 #150: Super H-mode development path for steady state research on DIII-D Nazikian 10:05 Staebler 10 163: High betaP Advance Tokamak 10:15 #195: Decouple high performance and steady-state program goals 10 Hanson 10:25 30 Discussion Holcomb 10:55 FAK 11:15 11:15 -VERTOR (I) 12:15 11:15 187: A Flexible Divertor Testbed for Shaping/Closure Covele 10 11:25 190: PF Coil Upgrade for Super X-Divertors with No Internal Coils Covele 5 10 11:30 216: Diagnostics in small places McLean 11:40 #219: EUV spectroscopy for high triangularity McLean 200: Discussion on the Role of DIII-D in Solving the Heat Flux Challenge 10 11:45 Jarvinen 10 11:55 #203: Discussion of a strategy toward validation of scrape-off layer physics models Groth 12:05 All 10 Discussion 12:15 01:15 01:15 -DIVERTOR (II

The DIII-D Research Program Emphasizes Key Issues for ITER and Future Fusion Facilities Highlighted in Recent FESAC Workshop Reports

Research Program Elements

Scientific Basis for Burning Plasma Core

- Transient Control
- Enabling ITER Q=10
 Path to Long Pulse

Scientific Basis for Boundary Solutions

- Detachment control
- Divertor optimization
- Test new wall materials

- Integrated Approach to Physics Interpretation
 - Innovative diagnostics
 - High-performance computing
 - Experiments targeting model validation

Core-Pedestal-Boundary Integration

DIII-D Research Will Provide a Scientific Foundation for Mitigating the Risk of Uncontrolled Transients

• Unique capabilities support science of disruption avoidance and mitigation

• Explore and optimize ELM control solutions for ITER and steady state tokamaks

Non-linear M3D-C¹ sim. of D₂ pellet, S. Diem

ELM Suppression Studies Show Significant Benefit Expected From New n=12 Midplane Coils and Additional 3D Power Supply

 Rotating perturbations elucidate plasma response, point to reduced 3D perturbations with higher order perturbations

ITER's Success Continues to be DIII-D's Highest Priority

Transient control is a major emphasis

- Disruption prediction and avoidance
- Unique tests of disruption mitigation techniques
- DIII-D can access all of ITER's candidate ELM control techniques
 - RMP, QH-mode, Pellets, I-mode
- ITER's design is mostly complete, but DIII-D can react quickly when issues are identified
 - Error field control, He operation,...
- Emphasis is transitioning to research exploitation
 - Operating scenarios
 - Plasma control
 - Energetic particle behavior
 - Testing ITER prototype diagnostics

NATIONAL FUSION FACILITY

Improved pace of ITER construction inspires us to resolve outstanding issues to enable successful burning plasma experiments

ITER baseline

DIII-D Will Test Three Current Drive Technologies Offering High Efficiency and Improved Access for Higher-Density Scenarios

- Top launch ECCD doubles efficiency
 - PAC rated priority #1,
 - Designed with GA corporate funding

- HFS LHCD in development
 - AT plasmas found compatible with low inner gaps →
 - HFS test tile in FY18, completion after LTO3

- Helicon ready to test physics of coupling at high power
 - Install 1MW launcher in during LT03 (with ASIPP)
 - Klystron from SLAC (with NFRI/KSTAR)

D.N. Hill/DIII-D Program Advisory Committee/April 2018

DIII-D Is Developing a Scientific Basis for Boundary Solutions Needed for Future High-Power Steady-State Reactors

• Reliable power and particle control compatible with high-performance core plasmas is required

• DIII-D will advance scientific understanding and predictive capability through key measurements and systematic model validation

Active collaboration with 2D simulation efforts is key for data analysis, interpretation, design, and prediction

DIII-D Is Developing a Scientific Basis for Boundary Solutions Needed for Future High-Power Steady-State Reactors

- Evaluate alternate divertor concepts compatible with high performance
 - Increase divertor density and impurity concentration with minimal impact on core performance
 - Expand radiating volume and reduce surface heat flux
- Staged divertor concept tests using sufficient diagnostics to compare with simulation

<u>Advanced Divertors</u> maximize volume for fusion energy production and minimize volume and complexity required to provide reliable power and particle exhaust

DIII-D Boundary Center Is Systematically Evaluating Fusion-relevant Candidate Materials

- Understand surface evolution with plasma interactions
 - Erosion/redeposition and surface evolution (DIMES, MIMES) + WiTS
 - Hydrogenic retention & permeation
- Understand material migration/mitigation in high performance plasmas
 - Interaction with large-scale PFCs
 - Impact on core

- Evaluate reactor-relevant plasma-facing materials (Linear facilities, DIMES, MIMES)
 - Novel materials for divertor targets
 - Engineered main chamber components

SAN DIEGO

DIII-D Will Explore the Physics Basis For Integrating Improved Core-Pedestal-Edge Solutions

- Pedestal mediates the interaction between core and the boundary plasmas
- Research focused on quantifying pedestal processes
 that determine pedestal structure
 - Ionization sources (fuel, impurity)
 - Turbulent transport, rotation, impurities
 - MHD stability (profiles: current, n_e , T_e , Z)
- Develop the scientific basis for optimizing scenarios
 - Pedestal manipulation to raise performance
 - Reactor relevant materials and geometries

Planned Facility Enhancements Will Strengthen Steady State AT and Boundary/PMI Research

	Facility Upgrades	Research Goals		
AT	Co-Counter NB	Increased co- power for high β scenarios, Low rotation high β SS scenarios		
State	Helicon/ HFS Lower Hybrid Top Launch EC, CCOANBI	High efficiency off-axis current drive at higher density		
leady	Expanded EC	Increase Te/Ti; Zero-torque H&CD Off-axis j(r); NTM stabilization; Perturbative transport		
Ś	NB Pulse/PowerExtension	T \longrightarrow 2 τ_R ; Higher β scenarios		
Boundary/PMI	New 2D/3D Power Supplies, New 3D coils	Improved divertor shaping RMP and 3D physics		
	Divertor Geometry Modification	Heat flux and density control; detachment physics		
	Divertor diagnostics, LBO, pedestal Ly α arrays	Dissipative physics, SOL flows and momentum, turbulence and transport, fueling, impurity xport		
	W inserts & PFCs tests	Understand sources and develop mitigation techniques		

DIII-D Research Program is Well Aligned With DOE-FES Strategic Plan

DIII-D Program Has an Excellent Track Record Meeting Research Milestones Proposed And Approved by DOE

#	Торіс	Date	Leader(s)
185	Quantify plasma response to externally imposed 3D fields (supports JRT)	September 2014	E. Strait, N. Ferraro
186	Explore heat flux reduction and plasma detachment through variation in divertor conditions and geometry	September 2014	A. Leonard, T. Petrie, S. Allen
187	Investigate nonlinear Interaction of Energetic Particles with Internal MHD Modes and Applied Fields	September 2014	D. Pace, G. Kramer, M. Van Zeeland
188	Establish requirements for control of TBM-induced effects for ITER	September 2014	M. Lanctot, R. LaHaye, W. Heidbrink
189	Assess the physics of the localized bulk ion edge flow velocity as a source of non-beam driven rotation for ITER	September 2014	J. deGrassie, J. Boedo, B. Grierson
190	Establish the physics basis for proposed ITER Disruption Mitigation Systems	September 2015	E. Hollmann, N. Commaux, N. Eidietis
191	Test transport models and evaluate potential for improved performance in ITER-like conditions	September 2015	B. Grierson, W. Solomon, G. Staebler
192	Assess trade-offs of peaked vs. broad current and pressure profiles in possible steady-state scenarios	September 2015	C. Holcomb, F. Turco, J. Ferron
193	Effect of Divertor Closure on Heat Flux Reduction and Detachment	Septernber 2016	A. Moser, S. Allen, T. Petrie
194	Develop integrated stability control strategies for robust high performance operation	September 2016	E. Strait, R. La Haye, D. Humphreys
195	Size scaling of momentum transport and toroidal rotation	September 2016	J. deGrassie, B. Grierson, G. Staebler
196	Evaluate high-Z divertor material erosion, surface migration, and impact on high performance plasma operation	September 2016	E. Unterberg, P. Stangeby, D. Thomas
197	Test predictive models of fast ion transport by multiple Alfven Eigenmodes	January 2017	Heidbrink, Gorelenkov, Pace, Waltz
198	Exploit New Power Supplies for Enhanced 3D Spectral Control, Plasma Response, and Operational Space	September 2017	Paz-Soldan, Nazikian, Youwen Sun
199	Quantify the roles of parallel and perpendicular transport, radiative and atomic physics in divertor detachment	September 2017	Covele, McLean, Wang

- 15/15 programmatic milestones completed on time (2014-2017)
- Strong contributor to 10 FES Joint Research Targets (2008-2017)
 - DIII-D was lead facility for 4 of these and will lead the 2019 JRT

DIII-D National Fusion Facility Maintains An Excellent Record Consistently Delivering Research Operation for DOE

- From FY03-FY18, DIII-D ran for 257.4 weeks, 8.6% above DOE target
- Total Proposed for last 5 years: 70 wks; Total Achieved: 76.3 wks
- Average availability 77%
- OSHA-recordable incidents flat since
 2014 and remain 2x lower than industry standard.

Close Coupling Between Theory and Experiments Enables Rapid Progress in Understanding

- Connect advances in plasma theory and experiments through innovative high performance computer codes and diagnostics and novel framework
- Energetic-particle physics
 - Verified and validated EP instabilities
- Performance prediction
 - Extensively tested pedestal predictive capability and predicted high-performance regimes
- Prediction and control of transient events
- Testing models for radiative dissipation, divertor detachment and impurity migration

Key Strength of the DIII-D Program: 82 Diagnostic Systems Managed by Universities, National Labs, and Industry

DIII-D Is a Key Facility for U.S. Scientific Leadership in Fusion Research

Chris Holcomb

Recognition for DIII-D Scientists in 2017

Chris Holcomb (LLNL): FPA Excellence in Fusion Engineering Brian Grierson (PPPL): Princeton University Kaul Award David Humphreys (GA): IEEE Fusion Technology Award Rick Moyer (UCSD): Fellow of the American Physical Society

Brian Grierson PPPL

Many Prizes and Awards in the past five years

- John Dawson Award for Excellence in Plasma Physics Research (2)
- EPS Landau Spitzer Award for Outstanding Contributions in Plasma Physics (2)
- Fellows of the American Physical Society (6)
- Katherine Weimer Award for Women in Plasma Science (1)
- IEEE Fusion Technology Award (1)
- Fusion Power Associates Excellence in Fusion Engineering (4)
- DOE Early Career Awards (2)

Broad Participation in DIII-D Research Reflects Growing Enthusiasm From the Domestic and International Communities

EAST/DIII-D Joint Experiments

95 grad students 68 post-docs

24 responses to 2017 DOE FOA

DIII-D Is an Outstanding Research Laboratory for Fusion Scientists From Around the World

DIII-D Facility Users (2017 report)

- 683 Research Users
- 323 On-site and 360 Remote
- 24 Countries
- 108 Institutions
- 95 Graduate Students
- 68 Post Doctoral Fellows

DIII-D International Collaborations Successfully Leverage Complementary Capabilities to Advance Fusion

 DIII-D and EAST Teams worked together – with both tokamaks at their disposal – to develop a long-pulse high β_P operating scenario with application to future devices

- AUG/DIII-D similarity experiments obtained ELM suppression in AUG
 - New regime for AUG research
 - Extension to metal-wall environment

Working together toward our common interest – fusion energy

Working Together, We Can Leverage Complementary Capabilities to Develop a Basis for Fusion

International collaboration accelerates fusion energy development

Working Together, We Can Leverage Complementary Capabilities to Develop a Basis for Fusion

International collaboration accelerates fusion energy development

DIII-D Research Plan Offers Compelling Opportunity to Advance Fusion Research Towards the World's Energy Goal

Extensive Plasma Control Tools

State-of-the-Art Predictive Models

Comprehensive Diagnostics

Highly Capable International Research Team

- Address critical ITER preparation, transients and development of validated simulation capability
- Develop basis for tokamak path beyond ITER with high performance core & compatible boundary solution

