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Supercomputers Provide Fusion Researchers with 
Fast-Turnaround 3D Magnetic Field Spectral Data 

A new milestone in the use of remote high-performance computing 
enables researchers to calculate complex 3D magnetic field 
manipulations between tokamak discharges in order to optimize 
performance levels. 

- 
Image courtesy of General Atomics 
Horizontal bars show the widths of magnetic islands in terms of a radial parameter (normalized poloidal 
flux) produced by the 3D fields in DIII-D discharge 169423 using the SURFMN code. Here, the numbers 
next to each bar designate the poloidal/toroidal periodicity of each magnetic island. The vertical axis 
measures the inverse field line pitch as one approaches the edge of the plasma (field pitch decreasing). 

The Science  
Small externally applied 3D magnetic fields can either be beneficial or detrimental to the plasma 
performance in tokamaks. In order to optimize the applied 3D fields in the DIII-D tokamak, a computer 
code known as SURFMN is used to calculate the properties of the fields inside the confined plasma. A 
supercomputer, located 2060 miles away at the Argonne Leadership Computing Facility (ALCF), has 
recently been used to demonstrate that high-resolution SURFMN spectral calculations can be carried out 
fast enough to allow researchers the time they need to adjust and re-optimize the 3D fields for the next 
plasma discharge.  
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The Impact 
This fast-turnaround demonstration of tokamak discharge optimization by a remotely located 
supercomputing opens up new opportunities for advancing fusion research. It establishes, for the first 
time, the feasibility of optimizing fusion plasmas in reactor scale tokamaks such as ITER in real time, 
using large-scale numerical codes that require access to petaFLOP (1015, floating point operations per 
second) or exaFLOP (1018) computing capabilities. 

Summary 
Tokamak plasmas are nominally confined with a strong toroidal magnetic field (BT) and a somewhat 
weaker poloidal magnetic field (Bp) that provide the basic 2D axisymmetric equilibrium. If properly applied, 
very small radial magnetic fields (Br), of order a few times 10-4 BT can prevent dangerous 
Magnetohydrodynamic (MHD) instabilities and control edge plasma pressure profiles. This technique can 
be used to control plasma MHD instabilities such as Edge-Localized Modes (ELMs). ELMs release large 
bursts of energy from the plasma edge, which can damage the walls of fusion reactors such as ITER. 
These small Br perturbations are created using 3D magnetic coils. They break the 2D axisymmetry of the 
magnetic field resulting in complex 3D magnetic field structures, known as magnetic islands, which can 
overlap to create regions of stochastic or chaotic field lines. In order to optimize the effects of Br on 
plasma performance, the spectrum of the applied Br field, shown in the figure, needs to be adjusted to 
match the tokamak parameters during various modes of operation. This requires a sophisticated 
computer code, known as SURFMN, that uses a reconstructed 2D axisymmetric BT, Bp equilibrium, along 
with advanced numerical models of field-error sources and 3D coil geometries, to calculate the applied Br 
spectrum at regular time intervals during each discharge. Increasing the spatial Fourier resolution of the 
SURFMN analysis grid from 32x32 to 128x128 results in a substantial improvement in the accuracy of the 
calculations and the number of magnetic islands that can be resolved. This also increases the 
computational requirements needed to return the resulting SURFMN data within the time frame required for 
making decisions on the parameters needed for the next discharge. In order to meet the fast-turnaround 
times required when high-resolution SURFMN grids are used, supercomputers capable of petaFLOP 
speeds are needed. Future developments in the accuracy of the SURFMN code, as well as those used for 
other large-scale plasma optimizations codes, will benefit from the ability to run on exaFLOP 
computational facilities and will greatly enhance our ability to optimize burning fusion plasmas such as 
those in ITER. 
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Related Links 
DIII-D user facility: https://diii-d.gat.com/diii-d/Home 

FES-DIIID	

ALCF user facility: https://science.energy.gov/ascr/facilities/user-facilities/alcf/  

ASCR-ALCF 
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