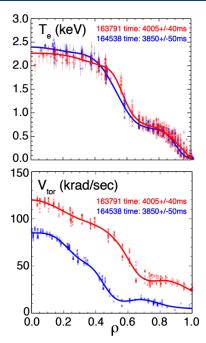
Please fill in each element in square brackets. Refer to http://science.energy.gov/news/highlights/ for examples.

April 2017

NEW PHYSICS UNDERSTANDING PROVIDES ATTRACTIVE PATH FOR DEVELOPING FUSION ENERGY VIA A STEADY-STATE TOKAMAK


International collaboration advances physics basis for excellent tokamak confinement at low rotation and potential to extend this scenario toward a fusion reactor.

U.S.- and China-based magnetic fusion scientists in the control room of the DIII-D tokamak in San Diego

The Science

For decades, operation of high performance tokamak plasmas has suffered from confinement quality degradation whenever the plasma rotation is reduced. This is because fast rotation and its radial shear (the so-called "E×B shear") can suppress micro-turbulence and reduce the radial energy transport. For a reactor-relevant rotation condition, this effect is expected to be weak, leading to potentially lower plasma confinement. In recent research, scientists from the US and China have discovered a new steady-state plasma operation regime which provides a turbulence suppression mechanism (called "Shafranov Shift") through magnetic shear that is independent of rotation.

Almost identical electron temperature profiles are produced in the experiments with both high and low rotation on DIII-D. Both discharges have very high confinement.

The Impact

A long-standing challenge for fusion scientists has been how to achieve good confinement in a reactor without relying on rapid plasma rotation. In the new plasma operation regime, the beneficial effect of rotation shear is replaced by magnetic shear, which also opposes the formation of large turbulent eddies. Maintaining high plasma confinement without plasma rotation could enable the economically attractive operation of a steady-state fusion reactor. The low transport achieved in these studies lead to very high levels of performance through a "transport barrier" in the plasma.

Summary

A collaboration of U.S.- and China-based magnetic fusion scientists is developing the physics basis for maintaining excellent energy confinement even in low-rotation plasmas where confinement normally suffers. Joint experiments on the DIII-D tokamak (San Diego, USA) have demonstrated an operating scenario known as "high poloidal beta (β_P) scenario" that achieves improved energy confinement quality relative to standard H-mode (H₉₈≥1.5) through the formation of an internal transport barrier (ITB) at large plasma radius that persists even at low plasma rotation. The international team of scientists systematically analyzed the influence of toroidal rotation, plasma pressure, and current profile on turbulence suppression both in experiment and simulation. They discovered that in this scenario the Shafranov Shift, proportional to the plasma pressure normalized to the poloidal field pressure, is responsible for turbulence suppression and the formation of the large-radius (ρ ≥0.7) ITB. Rotation plays a minor role in the turbulence in the understanding of the mechanism and in the predictions for scenario extension. Experiments to adapt the DIII-D scenario on the superconducting tokamak EAST (Hefei, China) have led to the realization of the first 61 sec pure RF heating fully non-inductive H-mode with ITB

features, an important first step for extending this scenario to long pulse high performance. Modeling using the TGLF transport code shows favorable projections of the high β_P scenario to burning plasmas in ITER and China Fusion Engineering Test Reactor (CFETR).

Contact

Siye Ding Institute of Plasma Physics, Chinese Academy of Sciences archangel@ipp.ac.cn

Andrea M. Garofalo General Atomics garofalo@gat.fusion.com

Funding

This work is supported by the U.S. Department of Energy Office of Sciences under DE-FC02-04ER54698. This work is supported by National Natural Science Foundation of China under Grant Nos. 11575248, 11305209 and 11575246. This work is sponsored in part by National Magnetic Confinement Fusion Science Program of China under Contract Nos. 2015GB103001, 2015GB102004, 2015GB101000 and 2015GB110001. This work is also sponsored in part by Youth Innovation Promotion Association Chinese Academy of Sciences (2016384).

Publications

A. M. Garofalo, X. Gong, B. A. Grierson, Q. Ren, W. M. Solomon, E. J. Strait, M. A. Van Zeeland, C. T. Holcomb, O. Meneghini, S. P. Smith, *et al*, "Compatibility of internal transport barrier with steady-state operation in the high bootstrap fraction regime on DIII-D", *Nucl. Fusion* **55**, 123025 (2015)

C. T. Holcomb, W. W. Heidbrink, J. R. Feron, M. A. Van Zeeland, A. M. Garofalo, W. M. Solomon, X. Gong, D. Mueller, B. Grierson, E. M. Bass, *et al*, "Fast-ion transport in q_{min}>2, high-β steady-state scenarios on DIII-D", *Phys. Plasmas* **22**, 055904 (2015)

Q. Ren, L. L. Lao, A. M. Garofalo, C. T. Holcomb, W. M. Solomon, E. A. Belli, S. P. Smith, O. Meneghini, J. Qian, G. Li, *et al*, "Test of bootstrap current models using high-βp EAST-demonstration plasmas on DIII-D", *Plasma Phys. Control. Fusion* **57**, 025020 (2015)

Q. L. Ren, A. M. Garofalo, X. Z. Gong, C. T. Holcomb, L. L. Lao, G. R. McKee, O. Meneghini, G. M. Staebler, B. A. Grierson, J. P. Qian, *et al*, "Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime", *Phys. Plasmas* **23**, 062511 (2016)

S. Ding, G. S. Xu, Q. Wang, W. M. Solomon, Y. Zhao, X. Gong, A. M. Garofalo, C. T. Holcomb, G. McKee, Z. Yan, *et al*, "Scenario development for high β_p low torque plasma with q_{min} above 2 and large-radius internal transport barrier in DIII-D", *Nucl. Fusion* **57**, 022016 (2017)

C. Pan, G. M. Staebler, L. L. Lao, A. M. Garofalo, X. Gong, Q. Ren, J. McClenaghan, G. Li, S. Ding, J. Qian, *et al*, "Investigation of energy transport in DIII-D High- β_p EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models", *Nucl. Fusion*, **57**, 036018 (2017)

Related Links

[include optional related links, one per line]

Additional information that will not be publically displayed on the webpage:

Metadata Tags: highlight all tags that are appropriate for a given highlight

PROGAM Select only those that contributed funding or resources	PERFORMER/FACILITY Select <u>at least one</u> (or more than one) of the elements below	ADDITIONAL Select as appropriate
ASCR	University (includes non-profit academic institutions)	Technology Impact
BER	DOE Laboratory	Collaboration
BER/BSSD	Industry	ARPA-E
BER/CESD	User Facilities	EERE
BER/BRCs	ASCR-NERSC	EM
BES	ASCR-ALCF	FE
BES/CSGB	ASCR-OLCF	NE
BES/MSE	ASCR-ESNET	NNSA
BES/SUF	BES-ALS	OE
BES/EFRCs	BES-APS	Non-DOE Interagency Collaboration
BES/Hubs	BES-LCLS	International Collaboration (only select if foreign entity contributed funds)
<mark>FES</mark>	BES-NSLS-II	ASIPP
HEP	BES-SSRL	
NP	BES-HFIR	
	BES-SNS	
	BES-Lujan	
	BES-CFN	
	BES-CINT	
	BES-CNMS	
	BES-CNM	
	BES-Foundry	
	BER-EMSL	
	BER-ARM	
	BER-JGI	
	FES-DIIID	
	FES-NSTX	
	FES-CMod	
	HEP-ATF	
	HEP-FermilabAC	
	HEP-FACET	
	NP-CEBAF	
	NP-ATLAS	
	NP-RHIC	