Overview of Recent DIII-D Experimental Results

M.E. Fenstermacher (LLNL)

Presented at the 62nd APS-Division of Plasma Physics Conference Memphis, TN Nov 9-13, 2020

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and under Contracts DE-FC02-04ER54698, DE-FG02-07ER54917, DE-FG02-05ER54809. LLNL-PRES-816753

DIII-D Continues to Target U.S. Missions to Fusion Energy

Fundamental Plasma Science

Make ITER Better

Develop Integrated Scenarios

DIII-D Continues to Target U.S. Missions to Fusion Energy

- Fundamental Plasma Science
 - Non-linear plasma response to 3D Fields
 - GAE Beam Injection Threshold
 - 2D Validated Divertor Impurity Concentration

Make ITER Better

Foundational Physics Understanding

• Develop Integrated Scenarios

TM1 Non-linear Plasma Response Model Quantitatively Predicts Narrow Isolated q₉₅ Windows of RMP ELM Suppression

 ELM suppression window predicted as ∆q₉₅ for 15% pedestal pressure reduction

TM1 Non-linear Plasma Response Model Quantitatively Predicts Narrow Isolated q₉₅ Windows of RMP ELM Suppression

ELM suppression window predicted as Δq_{95} for 15% pedestal pressure reduction

Experimental β_N
and shape
dependence
also predicted

First Observation of Beam Injection Rate Threshold for Global Alfvén Eigenmode

 Fast-ion mode disappears for beam injection rate below threshold

6

First Observation of Beam Injection Rate Threshold for Global Alfvén Eigenmode

• Fast-ion mode disappears for beam injection rate below threshold

Global Alfvén Eigenmode (GAE) excited by Doppler-shifted cyclotron resonance with sub-Alfvénic fast ions

First Observation of Beam Injection Rate Threshold for Global Alfvén Eigenmode

- Fast-ion mode disappears for beam injection rate below threshold
- Fit scaling with injection rate consistent with collisional saturation near marginal stability

Global Alfvén Eigenmode (GAE) excited by Doppler-shifted cyclotron resonance with sub-Alfvénic fast ions

8

Multi-Charge-State Carbon Measurements of Large Concentration Variations in Divertor Validate Models

EUV/VUV spectra combined with Divertor TS and Collisional Radiative Modeling

Significant departure from a fixed fraction assumption

- Inter-ELM intrinsic carbon impurity fraction $4.5 \pm 1.0\%$ in attached, $0.4 \pm 0.1\%$ in detached H-mode

Multi-Charge-State Carbon Measurements of Large Concentration Variations in Divertor Validate Models

EUV/VUV spectra combined with Divertor TS and Collisional Radiative Modeling

- Significant departure from a fixed fraction assumption
 - Inter-ELM intrinsic carbon impurity fraction $4.5 \pm 1.0\%$ in attached, $0.4 \pm 0.1\%$ in detached H-mode
- 2D profile of fractional abundance comparable to UEDGE with drifts and multi-species carbon transport

DIII-D Continues to Target U.S. Missions to Fusion Energy

- Fundamental Plasma Science
 - Non-linear plasma response to 3D Fields
 - GAE Beam Injection Threshold
 - 2D Validated Divertor Impurity Concentration

Make ITER Better

- RWM Control
- Pedestal Ion Heat Flux
- Tungsten Migration
- Develop Integrated Scenarios

Critical issues for the ITER Research Plan

M.E. Fenstermacher, 2020 APS Oral Overview

Resistive MHD Including Rotation Governs Ability to Control Mode Locking and Disruption Limits in ITER Baseline Scenario

- Plasma response amplitude increases at low I_i , high β_N
 - Plasma response to small applied sinusoidal n=1 from I-coils

Resistive MHD Including Rotation Governs Ability to Control Mode Locking and Disruption Limits in ITER Baseline Scenario

1.0

- Plasma response amplitude increases at low l_i, high β_N
 - Plasma response to small applied sinusoidal n=1 from I-coils

 MARS-F with resistivity and rotation provides agreement with response data

Resistive MHD Including Rotation Governs Ability to Control Mode Locking and Disruption Limits in ITER Baseline Scenario

1.0

0.5

- Plasma response amplitude increases at low I_i , high β_N
 - Plasma response to small applied sinusoidal n=1 from I-coils

First Main Ion CER Inferred Pedestal Ion Heat Flux Shows Transition from Neoclassical at High v^* , to Neocl. + Turbulence at Low ITER v^*

- Power and density scan across order of magnitude in v^* (1.2 \rightarrow 0.1)
- Main-ion CER T_i used to infer ion, electron energy fluxes

First Main Ion CER Inferred Pedestal Ion Heat Flux Shows Transition from Neoclassical at High v^* , to Neocl. + Turbulence at Low ITER v^*

M.E. Fenstermacher, 2020 APS Oral Overview

First Main Ion CER Inferred Pedestal Ion Heat Flux Shows Transition from Neoclassical at High v^* , to Neocl. + Turbulence at Low ITER v^*

M.E. Fenstermacher, 2020 APS Oral Overview

Integrated Model of W Ionization and Re-deposition Quantitatively Compared Against DiMES Experiment Data

 Measured asymmetries of re-deposited W "tails" interpreted with OEDGE/WBC/ITMC-DYN codes

Integrated Model of W Ionization and Re-deposition Quantitatively **Compared Against DiMES Experiment Data**

- interpreted with OEDGE/WBC/ITMC-DYN codes
 - Toroidal asymmetry: Plasma flow and impurity/plasma collisions along B_T field line

Integrated Model of W Ionization and Re-deposition Quantitatively Compared Against DiMES Experiment Data

DIII-D Continues to Target U.S. Missions to Fusion Energy

- Fundamental Plasma Science
 - Non-linear plasma response to 3D Fields
 - GAE Beam Injection Threshold
 - 2D Validated Divertor Impurity Concentration
- Make ITER Better
 - RWM Control
 - Pedestal Ion Heat Flux
 - Tungsten Migration

Develop Integrated Scenarios

- SS Hybrid Projection to ITER
- High q_min Fast Ion Confinement
- High Beta_p with Impurities

Potential of Negative Triangularity M.E. Fenstermacher, 2020 APS Oral Overview

Solutions for AT Scenarios

Steady State Hybrid Scenario Can Be Optimized With High Density and Pedestal Pressure

Steady State Hybrid Scenario Can Be Optimized With High Density and Pedestal Pressure

Increased edge **V**T_i from higher P_{heat} decouples peeling from ballooning limit

Higher p_{ped} & τ_E
at higher density

Steady State Hybrid Scenario Can Be Optimized With High Density and Pedestal Pressure

Increased Off-Axis NB Power Reduces AE Drive Giving Improved Fast Ion Confinement in High-q_{min} Plasmas

- More off-axis beams gave 15% higher β_N
 - Reduced beam maximum pressure gradient at rho_qmin

Increased Off-Axis N Improved Fast Ion C

- More off-axis beams gave 15% higher β_N
 - Reduced beam maximum pressure gradient at rho_qmin
- AE's reduced with offaxis beams and ECCD

es AE Drive Giving gh-q_{min} Plasmas

M.E. Fenstermacher, 2020 APS Oral Overview

Increased Off-Axis N Improved Fast Ion C

- More off-axis beams gave 15% higher β_N
 - Reduced beam maximum pressure gradient at rho_qmin
- AE's reduced with offaxis beams and ECCD

FUSION FACILIT

 Neutrons/TRANSP (classical) increased

- RSAEs can be controlled with q-profile manipulation

 Up to 36% higher neutron
 - Up to 36% higher neutron ratio with on-axis ECCD

M.E. Fenstermacher, 2020 APS Oral Overview

-4.5

-5.0

Formation of Large Radius ITB Compensates Pedestal Degradation due to Detachment, Achieving Excellent Core-Edge Integration Compatibility

Sustained high performance core β_N >3, β_p ~2.3, H₉₈~1.4, f_{GW}>1

Neon seeded ELM suppression and divertor detachment, T_{e,LP}<10eV q_{peak,IR}~0.4MW/

Formation of Large Radius ITB Compensates Pedestal Degradation due to Detachment, Achieving Excellent Core-Edge Integration Compatibility

H. Wang, Thurs PM

29

- Sustained high performance core $\beta_N > 3$, $\beta_p \sim 2.3$, $H_{98} \sim 1.4$, $f_{GW} > 1$
- Neon seeded ELM suppression and divertor detachment, T_{e,LP}<10eV q_{peak,IR}~0.4MW/
- Large radius ITB forms, deepens negative shear

Formation of Large Radius ITB Compensates Pedestal Degradation due to Detachment, Achieving Excellent Core-Edge Integration Compatibility

- Sustained high performance core $\beta_{\rm N}>3$, $\beta_{\rm p}\sim2.3$, H₉₈~1.4, f_{GW}>1
- Neon seeded ELM suppression and divertor detachment, Telle<10eV q_{peak,IR}~0.4MW/
- Large radius ITB forms, deepens negative shear

At ITB Radius r=0.6

1.0

0.5

0.0

0.35

0.30

0.25

0.20

Instability

Mountain

High Power, Diverted Negative Triangularity Discharges Show High Confinement, Significant β_N and ELM-free L-mode Edge

- No ELMs L-mode edge with up to 5x P_{L-H} , high-confinement and up to β_N =3.0
 - Combination of shape-induced effects that weaken turbulent transport
 - Only got H-mode at less negative triangularity

High Power, Diverted Negative Triangularity Discharges Show High Confinement, Significant β_N and ELM-free L-mode Edge

- No ELMs L-mode edge with up to 5x P_{L-H} , high-confinement and up to β_N =3.0
 - Combination of shape-induced effects that weaken turbulent transport
 - Only got H-mode at less negative triangularity

- NT is also promising candidate for coreedge integration
 - Robustly ELM-free with divertor at large R
 - Broad $\lambda_{\textrm{q}}$ and low $\textrm{P}_{\textrm{Sep}}$

DIII-D Program Much Broader Than Can Be Described Here – See Invited and ITER Talks Plus Two Poster Sessions

Invited Talks			
Tues	10:00	S. Haskey	Main-ion Thermal Transport in High Performance DIII-D Edge Transport Barriers
Tues	10:30	S. Ding	The Role of Toroidal Rotation in the Very High Energy Confinement Observed in Super H-mode Experiments on DIII-D
Tues	12:00	L. Schmitz	Reducing the L-H Power Threshold in ITER - What Can We Learn from Microscopic Transition Physics?
Wed	10:30	R. Wilcox	Pellet ELM triggering with low collisionality, peeling-limited pedestals in DIII-D
Wed	11:00	Qiming Hu	Predicting operational windows of ELMs suppression by Resonant Magnetic Perturbations in DIII-D and KSTAR
Wed	11:30	M. Austin	Reactor-friendly core and boundary of DIII-D diverted negative triangularity plasmas with persistent L-mode edge
Wed	12:00	D. Ernst	Favorable Core and Pedestal Transport Properties of the Wide Pedestal QH-Mode Regime
Thur	9:30	M. Beidler	Spatially-dependent simulation of runaway electron mitigation experiments on DIII-D
Thur	10:30	V. Izzo	MHD modeling of dispersive shell-pellet injection as an alternative disruption-mitigation technique
Thur	12:00	J. Hanson	Non-ideal stability and control of ITER baseline demonstration discharges
Thur	4:30	H. Wang	First Observation of A Fully Detached Divertor Natural Compatibility with A High Confinement Plasma State for Steady-State
Thur	4:30	F. Turco	The physics basis to integrate an MHD stable, high-power core to a cool divertor for steady-state reactor operation
Fri	9:30	S. Tang	Stabilization of Alfven Eigenmodes in DIII-D via Controlled Energetic Ion Density Ramp: Validation of Theory & Simulation
ITER Oral Session			
Mon	2:00	L. Baylor	Research on Disruption Mitigation Enabled by Shattered Pellet Injection Systems on DIII-D, JET, KSTAR in Support of ITER
Mon	2:48	C. Johnson	Diagnosing metastable populations in fusion edge plasmas using collisional-radiative modeling constrained by experiment
Mon	3:48	K. Thome	Changes in Impurity Transport with Applied Torque in DIII-D ELMy H-mode Plasmas
Mon	4:24	A. Garofalo	The high poloidal beta path towards steady state tokamak fusion.
DIII-D Posters Tuesday and Thursday Mornings			