Overview of FY19-22 DIII-D Program Plans Towards Advancing Development of Cost-Effective Fusion Power Plants for the US

by D.N. Hill

Presented at the DOE Fusion Energy Sciences DIII-D Budget Planning Meeting

via Zoom Videoconference

DIII-D Is Preparing for Physics Experiments Week of June 29th

- Operations Group took measured, deliberate approach to completing vent closeout and startup tasks
- Helium liquefier returned to operation, supporting neutral beam operation.
- Plasma Cleanup completed
 - Beams conditioned
 - Vessel cleanup completed.

 No confirmed CV-19 cases within DIII-D group, 3 cases at Torrey Pines (non-fusion) and 16 across all of General Atomics.

DIII-D Is Preparing for Physics Experiments Week of June 29th

- Limit to essential on-site presence in the Control Room
- Evaluating and adapting earning new tools for remote participation

Dedicated team GA + collaborators enabled steady progress

Preparation Under Way for Restarting FY20 Physics Operations to Complete 11 Operating Weeks in FY20

- Physics Ops starting June 29 (4wks on, 2 off)
- Procedures developed to allow research operations with COVID-19 restrictions in place
 - GA guidelines for "Returning to a Secure and Healthy Workplace"
 - DIII-D Operations "COVID-19 Work Procedures"
 - Approved by GA LSNC, released to DEC
 - Physics Operations Restart Working Group (pictured) developing procedures for continuing research with most/all remote physics participation
 - Identifying technical requirements
 - Configuring tools (communications, etc.)

Valuable Learning Opportunity for ITER Participation

DIII-D Research Accelerates Progress Toward Fusion Energy

Accelerate Progress on ITER

- Prepare for effective operation
 & scientific exploitation
- Realize the Path to steady-state power plants
 - Establish physics & technical basis

Resolve Critical Physics and Technology

- Burning plasma conditions (self-heated)
 - Self-consistent fully non-inductive
 - Integrated divertor solutions
 - Transient control (ELMs, disruptions)

US Fusion Focus: Science - Solutions

FY20 Operations Will Exploit Off-Axis Heating and Current Drive Options For AT and Low Torque for ITER Scenarios

• Off-axis co-counter NBCD with pressure broadening for high β_N

Helicon Current Drive Experiments

• Top-launch ECCD for increased efficiency

DIII-D Will Continue to Prioritize Research to Enable Success in ITER

- Develop comprehensive solutions to the disruption challenge
 - Disruption free protocol: robust real time control of plasma operation
 - Machine learning leading to significant successes →
 - Accelerate development of disruption mitigation tools and science
 - Cryo launcher, passive runaway mitigation coil, fast disruption diagnostics
- Understand 3D optimization to control transients
 - New coils and power supplies will resolve ITER optimization for RMP-ELM suppression & QH access
 - Unique tools to probe stability & 3D physics (ELM, TM, RWM, rotation)
- Optimize ITER performance and underlying physics tools
 - Isotope campaign: H mode access, ELM suppression & confinement
 - New EC strategy (see later) plays critical role in ITER preparation
 - Understand transport and stability in low torque electron dominant regimes
 - Optimize path to high performance & required stability or mode control tools

Position U.S. to lead on ITER with scientific tools to optimize performance and learn from ITER plasmas

False positive rate

Developing Integrated Solutions For Future US Compact Pilot Plant Requires Major Upgrades and/or Next Step Tokamak Facility

- Critical challenges:
 - Dissipative divertor with high confinement core
 - Confident projection of reactor solutions
 - Requires higher field, power and particle density
- A major upgrade to DIII-D is projected to close gaps & enable study of critical reactor physics
 - Increased shape, field & current drive \rightarrow x2-3 energy & density, making more reactor-relevant transport, EP and bootstrap regimes
 - Combine with closure to assess high dissipation divertor compatibility with opaque collisionless radiative high performance pedestal
- A new facility would self-consistently test and optimize solutions at relevant reactor parameters to retire pilot plant risks
 - Scoping studies indicate modest size 1.25m 4-7T facility address this
 - GA developing potential NTUF concept & evaluating GA site capability

Our Goal: Inform US Pilot Plant and potential NTUF Designs

DIII-D Can Develop Transformative Solutions to Meet the Pilot Plant Challenge over the Next Decade

- Critical needs:
 - High confinement steady state core (current profile & current drive efficiency are key)
 - Highly dissipative divertor to handle fluxes
 - How to achieve? How to marry together?
- DIII-D near term plan responds to CPP to lay foundations for pilot path
 - Fully commit to EC expansion
 - Key to AT, transport, stability, EP & ITER lines
 - Develop more efficient current drive
 - Optimize closure & assess at high power
 - 3D and disruption mitigation tools
 - Negative triangularity as a game changer critical to its potential for an FPP
 - DIII-D to address the critical questions world first

Continued U.S. leadership in fusion research

Requested Funding for FY21-22 Supports Investigation of New Capabilities for Non Inductive Current Drive: Helicon & HFS-LHCD

• Helicon Experiments will begin in FY20

- Completing control system
- Helicon system commissioning has started
- High power operation starts in September and fully developed in FY21

• HFS-LHCD in FY21 for efficient off-axis current drive

- MIT and GA collaboration
- Site Prep and final design tasks are progressing

 FOAs are providing advanced diagnostic capabilities supporting RF wave-plasma science

EC System – Revised Strategy for EC System Focusses on High Efficiency Top Launch and Improved Reliability

- 8 gyrotron System Gyro #9,10 delayed; replaced with two additional higher efficiency Top Launch systems
 - 3 Top launch systems provide equivalent ECCD as 6 side launch
- Accelerate replacement of all old tubes
- Improve quality and timeliness of existing vendor (CPI)
- Develop alternate gyrotron supplier
 Purchase 2 gyrotrons from new supplier
- Build test stand and HVP/S to enable offline conditioning to full power
- Required funding: FY19 carryover and FY21/22 Incremental funding

11

Longer-Range Non-Inductive Current Drive Strategy For AT Development Depends On Technology and Physics

12

Maximizing Top Launch EC Advances High – β Steady-State Goals With Some Modest Compromises

- Advanced tokamak requires strong off axis CD
 - Increased efficiency of 3 top launchers puts enough current where needed \rightarrow higher β with less EC power
 - Outboard launchers provide needed flexibility
- ITER baseline & variants: 8 lines gives ample power for dominant electron heating regimes
- Stability: 6MW good for ITER baseline NTM control
 - More limited scope at high β for TM optimization or more relevant low fast ion content RWM physics tests
- Perturbative transport studies challenged as $\boldsymbol{\beta}$ rises
 - Highest power demand: core e⁻ heating + off axis EC gradient modulation
 - 6MW good for β_{N} =1.9 ITER baseline. EC demands rise rapidly with β_{N}

Challenge eased if helicon/LHCD work → more transport & profile control, higher B

New strategy gets key power and current drive for priority goals sooner and cheaper. Retain option for 2 more lines later

DIII-D Strategy Links Configuration Changes, Diagnostic Development, and Model Validation to Build Predictive Capabilities for Advanced Divertor Design

DIII-D Boundary Program Is Providing Essential Input Needed to Develop Divertor Solutions For Steady-State Fusion Reactors

Understand Dissipative Divertors

- Impurity radiation
- Role of ExB drift and plasma flow
- Turbulence transport

Radial transport (λ_q) impurity radiation ($T_e \sim 10-30 \text{ eV}$) lonization, Charge exchange ($T_e < 5 \text{ eV}$) Particle transport (Parallel and ExB) Recombination ($T_e < \sim 1 \text{ eV}$)

2D Div Thomson

2D Flow Imaging

Experiment

Simulation

(UEDGE)

He⁺ Velocity

SOL Model Validation

Close interaction between experiment/measurement and simulation is key to developing predictive capability

DIII-D Boundary Program Is Providing Essential Input Needed to Develop Divertor Solutions For Steady-State Fusion Reactors

- Understand Dissipative Divertors
 - Impurity radiation
 - Role of ExB drift and plasma flow
 - Turbulence transport
- Evaluate Divertor Closure
 - Manipulate E ×B drifts in SAS to optimize detachment for both B-directions (SAS-1V)
 - Inform SAS-2 design and optimization
- High-triangularity, High-elongation option
 - Maximize core performance by removing inner cryopump and shifting SAS-2V inward
 - Decision factors: Significantly higher cost, diagnostic impacts vs. core performance gain

Solutions For Steady-State Fusion Reactor vertors blasma flow

Use staged divertor changes motivated by modeling to stress-test codes & advance predictive capability

DIII-D Boundary Program Is Providing Essential Input Needed to Develop Divertor Solutions For Steady-State Fusion Reactors

- Understand Dissipative Divertors
 - Impurity radiation
 - Role of ExB drift and plasma flow
 - Turbulence transport
- Evaluate Divertor Closure
 - Manipulate E ×B drifts in SAS to optimize detachment for both B-directions (SAS-1V)
 - Inform SAS-2 design and optimization
- Address Critical PMI issues
 - Understand impact of divertor closure on W sourcing and transport (SAS-1VW)
 - Evaluate new main chamber materials for DIII-D and next-step devices (WITS)

Poloidal profile of n_w (at/m³) near Separatrix

Vits (inc) 0 125 cm 0 Noveable Bellows

Develop a viable PMI solution compatible with high-performance core for ITER and beyond

Generate Basis for Reactor Disruption Mitigation System and Demonstrate Path for Disruption-Free Operation FY20-22 plans

- DIII-D remains lead innovator establishing credible DMS design
 - Verify adequacy of SPI for ITER DMS
 - INC: Camera & bolometry upgrades
 - Pursue reactor-relevant alternatives to SPI
 - INC: Magnetically shielded shell pellet
 - New solutions for runaway electron control
 - INC: Passive runaway deconfinement coil
- Must demonstrate robust solutions to finalize requirements for ITER & CPP

operation

Developing new methods for disruption-free operation

Machine learning for disruption avoidance & detection

Disruption-free protocol

D.N. Hill/DIII-D 2020 FWP Budget Planning Meeting/May 28, 2020

DIII-D Will Provide a Scientific and Technical Basis for Robust ELM-Control Solutions for ITER and Steady-state Reactors

DIII-D Strengths and Capabilities Include

- Broad set of actuators
- Wide range in pedestal collisionality
- Comprehensive diagnostic set
- Close connection to theory
- Expand operating space for ELM-free regimes, including negative triangularity
- New M-coils (FY23) and second PS will provide more spectral flexibility and better match to ITER
 - Explore Quasi-symmetric optimizations possible collaboration opportunity with stellarator community
- ELM pacing with impurity granules or fuel pellets

N=12 TIONAL FUSION FACIL

2nd 3D P/S & New 3D coils

Rotation Control

ELM-free Regimes

MTC test winding

Qualification of New Path to Core-edge Integration Via High Performance L-mode Enabled By Tile Modification

- Negative-Dee L-mode \rightarrow attractive edge solution: low P_{sep}, high f_{rad}, no ELMs
 - Promising results from early experiments and simulation
- Targeted mini-campaign provides
 - Sufficient power to evaluate confinement.
 - Evaluate edge pressure limits (no ELMs).
 - Stress-test radiative edge capabilities.
- DIII-D uniquely flexible, powerful & welldiagnosed to accomplish this task
 - Can demonstrate a core-edge solution
- Informs key <u>five-year plan research lines</u> with potentially transformational results.
 - β limits, edge stability, transport, Divertor heat flux

DIII-D Operations and Enhancements Schedule for FY19 – FY22 Incremental Funding

		FY1	9	FY	20	FY2	21	FY22		FY	23	FY	24	FY	25	
OPS weeks	LTO	03	12	2	9	10 2	6	16 2			22	20	LTC) 4	20	
NB									D	esign	, Fab (Σο-Cοι	nter N	B – 30	•	
EC Top	Laur	Replace	emen	t Gyro: Tc	s #1-6 op Laun Buildin Test	Spa ch #2, g Expa Socke	 A state <	ros #1,2	*	•	*					
RF H&CD			Helic L	con1 N ower H	NW 🔶 Iybrid	1 MW	٠									
3D			Pro	cure/ir	nstall 30) Suppl	y #2	◆ M-	Coils	5						
Divertor								SAS-2 U	lppe	r 🔶			SAS-2	Lower	٠	
PMI Neg-Triang						Neg Tri	iangul	arity 🔶	WITS	•						
NATIONAL FUSION FACILITY SAN DIEGO	·				D.1	N. Hill/DIII-D 2	020 FWF BC		danc	Ce 10y 20, 202		FY	21/22	Incren	nental	

Investments in DIII-D Supports Large National and International Research Teams To Enable World-Leading Scientific Research

- 718 Scientific Technical Users from
 126 Institutions
- 410 US citizens, 308 non-US citizens from 37 countries
- 274 affiliated with educational institutions, 444 other
- 56 post-docs, 96 Ph.D. students, 9 Masters degree, 26 undergraduates

Source: Active DIII-D Cyber Access Accounts in October 2019

DIII-D Research Plan Offers Compelling Opportunity to Advance The World Towards Fusion Energy

Highly Flexible Operating Capability

State-of-the-Art Predictive Models

Comprehensive Diagnostics

Highly Capable International Research Team

- Address critical ITER preparation, transients and development of validated simulation capability
- Develop basis for tokamak path beyond ITER with high performance core & compatible boundary solution

Proposed FY20-22 DIII-D Program Milestones

TITLE OF MILESTONE	DUE	PI	MS #	YEAR
Evaluate efficacy of disruption mitigation by core impurity deposition using shell pellet injection	2020	Eidietis, Hollmann, Bardoczi	2020-1	2020
Evaluate impact of divertor closure on particle transport and heat dissipation	2020	Shafer, Moser, Wang	2020-2	2020
Test impurity transport models and control solutions in reactor relevant plasma conditions (JRT)	2020	Howard, Abrams, Grierson, Samuell	2020-3	2020
Commission and conduct preliminary physics assessment of helicon current drive with ~1MW system	2020	Garofalo, Pinsker, Moeller, O'Neill, Lau, Porkolab	2020-4	2020
Characterize assimilation limits for deuterium SPI in parallel with high-Z neon injection (JRT)	2021	Eidietis, Hollmann, Shiraki	2021-1	2021
Unraveling the physics of high-Z leakage in a slot-like divertor configuration	2021	Abrams, Sinclair, Unterberg, Nichols	2021-2	2021
Evaluate tradeoffs between core performance and divertor power handling with shaping	2021	Grierson, Jarvinen, Snyder	2021-3	2021
Complete construction of LHCD system and commence initial powered tests in plasmas	2021	Wukitch, Pinsker, Ops	2021-4(I)	2021
Mitigate E×B effects in SAS by change of tile shape to improve power dissipation for both B_t directions	2021	Guo, Ma, Thomas, Wang	2021-5(I)	2021
Impact of Isotope Mass on Tokamak Performance	2022	McKee, Osborne, Turco	2022-1	2022
Improved understanding of Pedestal and ELM transport characteristics through identification of turbulence drives and damping, and through code validation and prediction	2022	Saarelma, Rhodes, Groebner, Mahajan	2022-2	2022
Test models of divertor impurity density required for dissipative divertor operation	2022	Samuell, Leonard, Lore	2022-3	2022
Evaluate effectiveness of disruption prevention and avoidance algorithms in ITER and fusion power plant- relevant plasma conditions	2022	Barr, Olofsson, Humphreys	2022-4(I)	2022
Use upgraded off-axis current drive sources to understand requirements for fully non-inductive core scenarios with broad profiles and $\beta_N \ge 4$	2022	Holcomb, Park, Collins	2022-5(I)	2022
Evaluate Negative Triangularity as an Integrated Reactor Scenario	2022	Austin, Paz-Soldan, Marinoni, Scotti	2022-6(I)	2022

24

DIII-D Facility Enhancements Significantly Advance Core and Boundary/PMI Research To Accelerate Fusion Energy Science

	Facility Upgrades	Research Goals				
p	Co-Counter NB	Increased co- power for high β scenarios, Increased power with balanced torque Low rotation high β SS scenarios				
Core Plasn	Helicon/ HFS Lower Hybrid Top Launch EC, CCOANBI	High efficiency off-axis current drive at higher density				
	Expanded EC	Increase Te/Ti; Zero-torque H&CD Off-axis j(r); NTM stabilization; Perturbative transport				
	NB Pulse/Power Extension	$T \longrightarrow 2\tau_R$; Higher β scenarios				
Boundary/PMI	New 2D/3D Power Supplies, New 3D coils	Improved divertor shaping RMP and 3D physics				
	Divertor Geometry Modification	Heat flux and density control; detachment physics				
	Divertor diagnostics, LBO, pedestal Lyα arrays	Dissipative physics, SOL flows and momentum, turbulence and transport, fueling, impurity transport				
	W inserts & PFCs tests	Understand sources and develop mitigation techniques				

