
# DIII-D Program Overview: Future Directions for the Next Five-Year Plan

by D.N. Hill

Presented to the DIII-D Program Advisory Committee San Diego, California



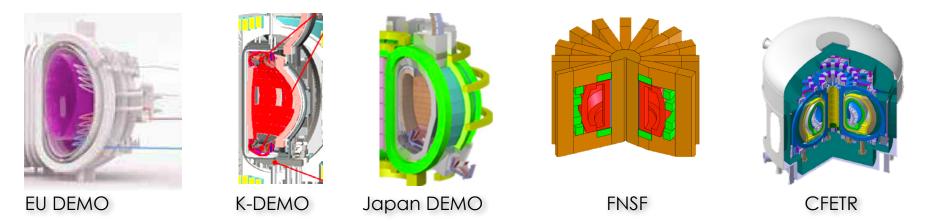


**GENERAL ATOMICS** 

016-17/DNH/rs



## We are Entering the Burning Plasma Era


#### ITER construction underway

 Exciting and vital validation of the fusion energy concept

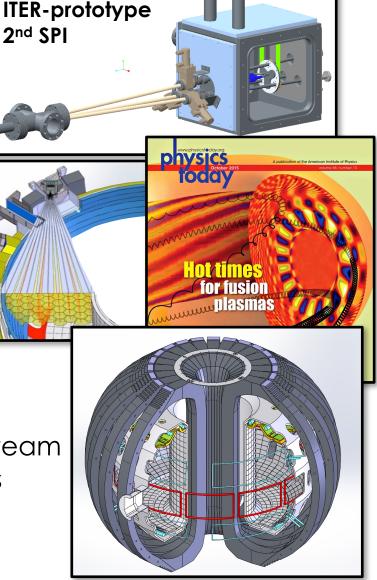




World program discussing major facilities beyond ITER

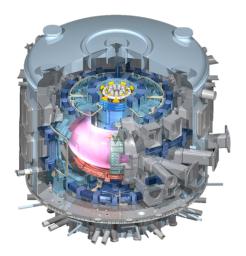


 Key scientific questions and challenges remain for existing programs to address to inform future missions




2

# Our Vision for the DIII-D Program Is Based on Three Guiding Principles

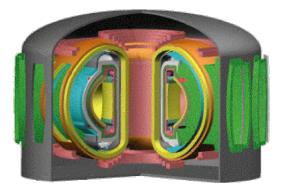

- Research with an Energy Goal
   Address challenges to achieving
   fusion energy
- Scientific Excellence
   Fastest route to success and
   developing predictive capability
- World-Class Facility for U.S. Office of Science

Upgrades for access to new physics Highly capable scientific & operations team Train future generation of fusion experts





# DIII-D Research is Focused on Key U.S. Fusion Energy Goals




#### ITER success

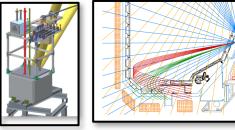
- Ensure rapid progress to Q=10
- Resolve (few) remaining design issues
- Scientific basis for U.S. exploitation and leadership in ITER

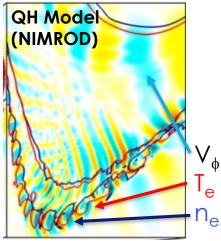
#### Path to Steady-State Fusion Energy

- High performance core
- Power handling & materials
- Reactor-relevant current drive technology



#### DIII-D Is a Vital Resource to Develop Viable Paths & Establish Scientific Basis





# DIII-D is a Highly Capable Facility for Advancing Fusion Energy Development Through Scientific Discovery

- Flexibility to explore relevant regimes: Torque, β, n<sub>e</sub>, 3D, P & J profile
- Comprehensive Diagnostics
  - Profiles, 2D & 3D with spatial & energy resolution
- Tools to validate advanced Simulation
- Capability to Perturb and Control plasmas
  - Localized heating, current drive, particles
- Strong collaborative scientific Team
  - 100 institutions, leading universities, laboratories and joint experiments with international partners

Enables DIII-D to pioneer new approaches, resolve scientific questions, and extrapolate to future reactors

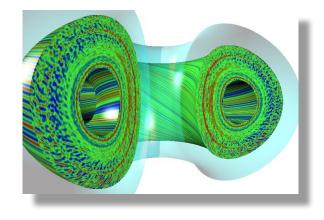


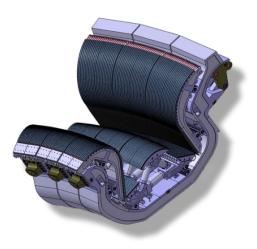






# The DIII-D Research Program Emphasizes the Critical Issues for ITER and Future Facilities

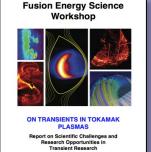

#### **Two Main Program Elements**


### Scientific Basis for Burning Plasma Core Transient Control

- Enabling ITER Q=10
- Path to Steady State

#### Scientific Basis for Boundary Solutions

- Detachment control
- Divertor optimization
- Test new wall materials



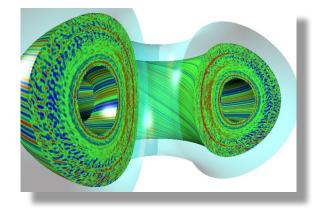


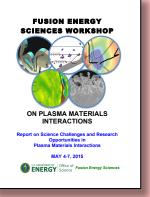



# The DIII-D Research Program Emphasizes the Critical Issues for ITER and Future Facilities

#### Research Program Elements are well-aligned with FES workshops

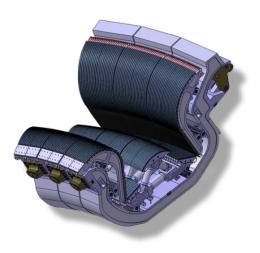



June 8-11, 2015


Fusion Energy

U.S. DEPARTMENT OF ENERGY Office of Science  Scientific Basis for Burning Plasma Core

 Transient Control

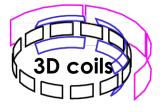

- Enabling ITER Q=10
- Path to Steady State





#### Scientific Basis for Boundary Solutions

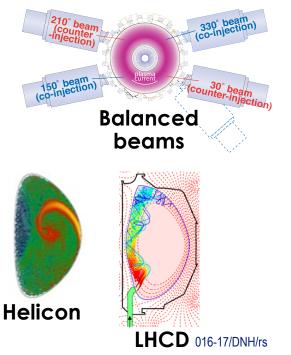
- Detachment control
- Divertor optimization
- Test new wall materials






# DIII-D Will Help Resolve Key Physics to Validate Attractive Operating Scenarios to Fusion Devices

#### Develop robust control of transients

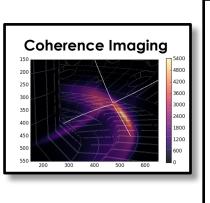

- Resolve key tearing, RWM & 3D physics
- Understand and optimize ELM suppression
- Safely quench disruptions & dissipate runaways

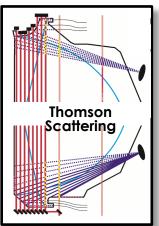


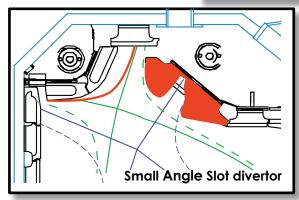


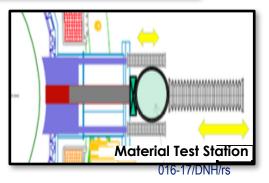
#### Determine how to optimize burning plasma performance

- Understand multiscale transport
- Develop integrated scenarios for Q=10
- Establish physics basis to design future steady-state fusion reactors
  - Validate physics in high  $\beta_N$  conditions
  - Show self-consistent stationary solutions exist





NATIONAL FUSION FACILITY SAN DIEGO


# DIII-D Will Help Develop a Scientific Basis for Boundary Solutions Needed for Steady-State Reactors

- Advance scientific understanding and develop predictive capability through extensive model validation
  - Determine key processes for divertor dissipation
  - Resolve role of drifts and turbulence
- Develop advanced divertors compatible with high performance
  - Maximize heat flux dissipation without degrading core
  - Integrate staged divertor concept tests
- Validate reactor-relevant materials
  - Understand impurity sourcing, migration and transport
  - Evaluate compatibility with fusion core










# The DIII-D Research Program Emphasizes the Critical Issues for ITER and Future Facilities

#### **Research Program Elements**

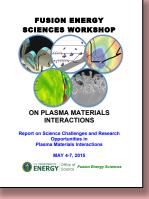
#### Fusion Energy Science Workshop



Report on Scientific Challenges and

Research Opportunities in Transient Research

June 8-11, 2015


Fusion Energy

ENERGY Office of Science

 Scientific Basis for Burning Plasma Core

 Transient Control

- Enabling ITER Q=10
- Path to Steady State



#### Scientific Basis for Boundary Solutions

- Detachment control
- Divertor optimization
- Test new wall materials

**Core-Pedestal-Boundary Integration** 

#### **Predictive Understanding**



- Integrated Approach to Physics Interpretation
  - Innovative diagnostics
  - High-performance computing
  - Experiments targeting model validation

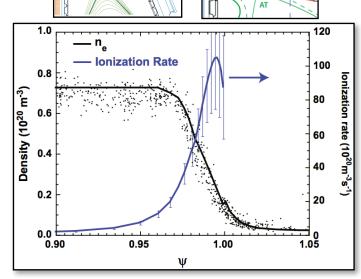


# **DIII-D Will Explore the Physics Basis For Integrating Core-Pedestal-Edge Solutions**

Challenge: Minimize dissipative volume to maximize fusion core

Pedestal

Processes set




- Turbulent transport, rotation, impurities
- Influence of neutrals, ionization, radiators
- Develop the scientific basis for optimizing scenarios

Core

Pressure

- Pedestal manipulation to raise performance
- Reactor relevant materials and geometries



Boundary **Reliable heat** 

removal

SAS

Small Angle Slot

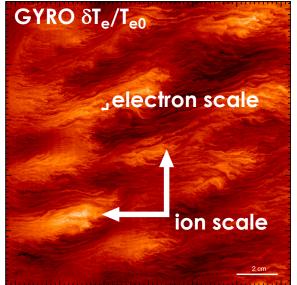
SAS II concept design

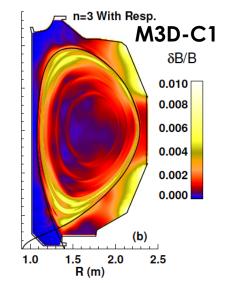


# We Are Moving Toward a New Frontier of Integrated Multi-Scale Predictive Simulations

#### DIII-D is an ideal platform for model validation

- Extensive diagnostic set
- Operational flexibility
- Connections to other tokamaks
- Advances in theory & simulation facilitate planning, executing and analyzing experiments


Developing "predict first" workflow


 Simulations integrating coupled scales / regions benefiting from high performance computing



Close coupling between theory/model development and DIII-D experiments enables rapid progress in understanding

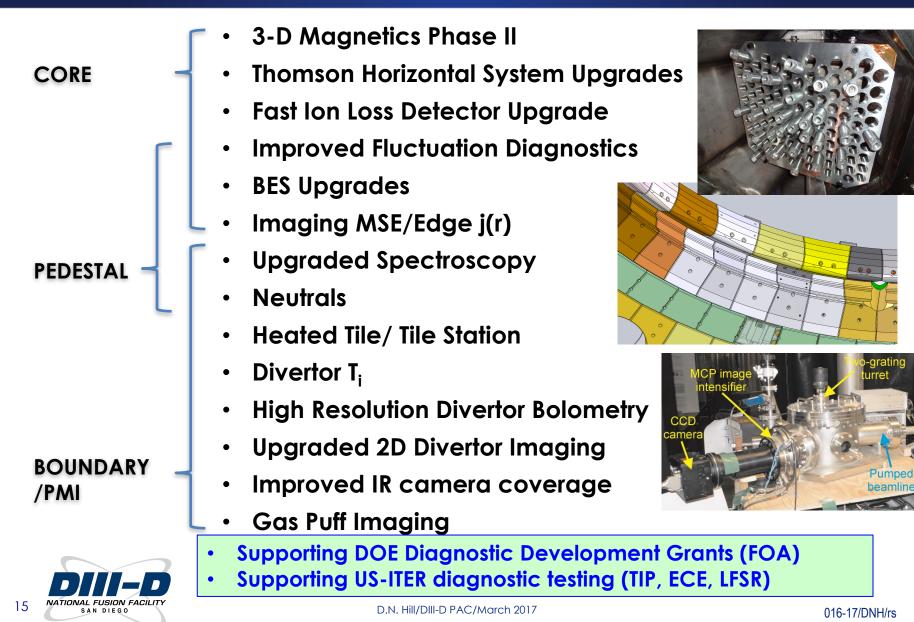






## Upgrades Leverage Existing Capabilities and Support a Vibrant and Exciting Research Plan

| New Scientific Exploration               | Enabled by                               |
|------------------------------------------|------------------------------------------|
| Low torque, high beta                    | 2 <sup>nd</sup> co-counter steerable NBI |
| Electron heated regimes                  | 10 gyrotron system                       |
| Reactor current drive schemes            | Top-launch EC, Helicon, LHCD             |
| 3d spectral flexibility (n=1-4)          | New 3d coils and power supplies          |
| Divertor model validation & optimization | Divertor mods and diagnostics            |
| Reactor-relevant materials               | New PFCs and tests of materials          |


- Proposed upgrades are well-suited to resolving critical issues for ITER and steady-state fusion
  - Control of transients (ELMs, disruptions)
  - Tightly coupled physics of steady-state solution
  - Handling high power exhaust



# An Ambitious Plan for Upgrades Appears Feasible with Strong DOE Support

|         | FY18                               | FY1                                 | 9 FY20                                               | <b>FY21</b>  | FY22 F         | (23 F)               | <b>′24</b>      |
|---------|------------------------------------|-------------------------------------|------------------------------------------------------|--------------|----------------|----------------------|-----------------|
| OPS     | 18                                 | LTO 3                               | 10 16                                                | 18           | 18 10          | LTO 4                | 10              |
| NB      | Co-Cou<br>Power/P<br>Upgrad        | 1                                   | <ul><li>♦</li><li>♦</li><li>♦</li><li>19MW</li></ul> |              | € 20 MW        | Counter NB 〈         | )<br>23 MW      |
| EC      | -                                  | #9,10 (1 or 1<br>lacements          | 5 MW) 🔷 🔷                                            | ♦ ♦ ♦        |                |                      |                 |
| RF      | He                                 | icon or LH                          | $\diamond$                                           |              | Li             | OR Helicon           | $\diamond$      |
| 3D      |                                    |                                     | 3D Supply #2                                         | 🔶 M-Coil     | Stabilizing Co | nformal Wall 🤇       | >               |
| Diverto | SA                                 | nostics<br>S-1 Partial<br>alignment | SAS-2 Upper<br>(CFC tiles)                           | <b>♦</b>     | SAS-2 Lower 🔷  |                      |                 |
| ΡΜΙ     |                                    |                                     | Tile Station                                         | SiC Limiters | SAS-2U W 🔷     | SiC Wall +<br>W-Div? | $\rightarrow$   |
| 14 MAT  | IONAL FUSION FACILITY<br>SAN DIEGO |                                     |                                                      | OOPERATIVE   | e Agreement st | •                    | '19)<br>/DNH/rs |

# Innovations in Diagnostics will Lead to Breakthroughs in Scientific Understanding and Model Validation



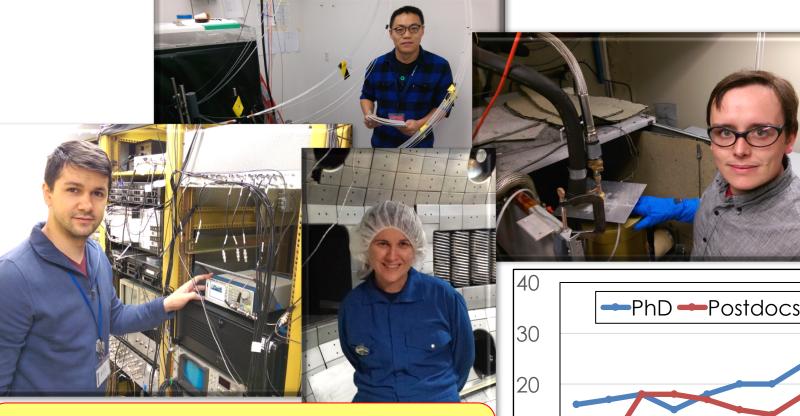
# Upgrades Strengthen DIII-D as a Vital User Facility for the U.S. Fusion Community

- High level of available run time & broad research capability
- Offers national and international leadership opportunities to U.S. research scientists and universities
  - Leading research fields at facility, experiments, diagnostic innovation,' testing theory & simulation
  - Leading international teams with worldwide recognition

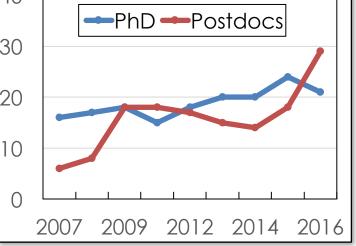
#### Cutting edge scientific tool

- Focus on physics. Frontiers initiative explores foundations of plasma & fusion science
- Six times winner APS Excellence in Plasma Physics

DIII-D is a key element in U.S. scientific leadership

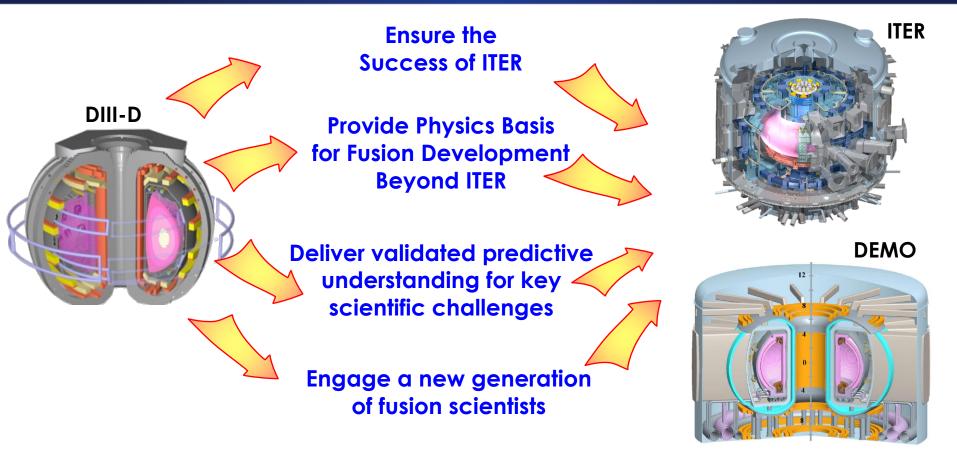







## DIII-D Is Supporting a Growing Number of Students and Post Doctoral Fellows Engaged in High Impact Research




DIII-D can fulfill a critical need to train the next generation of fusion physicists who will pioneer research on ITER





## DIII-D Research Plan Facilitates a Bold and Expanding US Fusion Program With a Clear Energy Goal



Enabled by a highly capable facility with technical reach and flexibility to probe the relevant physics of burning plasmas



D.N. Hill/DIII-D PAC/March 2017

### The Proposed Research and Facility Enhancements Will Keep DIII-D at the Fusion Energy Frontier

Leverages investments in DIII-D to deliver exciting research that is well aligned to FES priorities and world-wide fusion program needs

Plan emphasizes high impact research to help enable a successful program on ITER and strengthen the case for the advanced tokamak approach to fusion energy

Delivers new capabilities through targeted upgrades that should transform the landscape for fusion science



