Progress of ECW and Alfven Wave Experiments in the SUNIST Spherical Tokamak and Related Theoretical Research Activities

Zhe GAO (高喆)1 and the SUNIST group1,2

1) Department of Engineering Physics, Tsinghua University, Beijing, China
2) Institute of Physics, Chinese Academic of Science, Beijing, China

This work is Supported by NSFC (No. 11175103, 10990214 and 11005066), MOST of China (No. 2008CB717804, 2009GB105002 and 2010GB107002) and Tsinghua University Initiative Scientific Research Program.
Brief introduction to the SUNIST

- **Sino United Spherical Tokamak**
 - Managed by Department of Engineering Physics, Tsinghua Univ. and Institute of Physics, CAS
 - Close collaborated with SWIP, ASIPP and other universities.

- **Typical parameters**
 - \(R_0/a \approx 0.3 \text{m} / 0.23 \text{ m} \)
 - \(B_{T0} < 0.15 \text{ T} \)
 - \(I_P \approx 50 \text{ kA} \)
 - \(n_e \approx 1 \times 10^{19} \text{ m}^{-3} \)

- **Major diagnostics**
 - Langmuir probes /magnetic probes
 - 94GHz interferometer /26-40GHz reflectometer
 - Fast camera (5130 fps) /\(H_a \) diode array
 - Visible Spectrometers (200 ~ 1000 nm)

- **Major interests/activities**
 - Properties of ST plasmas
 - Edge plasma fluctuation
 - MHD activities and its control (by biased electrode, external coils, rf antennae)
 - Non-inductive plasma startup and CD
 - Startup by electron cyclotron waves
 - Alfven waves current drive
Outline

• Recent research progress
 – ECW startup: experiment and modeling
 – Preliminary results of AW experiments

• Efforts for further experiments
 – Improvement of Ohm discharge
 – Upgrade of rf system
 – Future experimental plans

• Some related theoretical researches
 – O-X-B conversion of ECRF
 – Nonlinear ponderomotive force and current/flow drive

• Summary
ECW startup: experiment

- **Experimental setup and results**
 - 2.45 GHz O mode/<100 kW/10 ms (loaned from SWIP)
 - ~2 kA I_p last for several ms
 - I_p is inversely proportional to B_V
 - Closed flux surface formed but no current jump observed

- **What we are interested in**
 - The spikes at the beginning of discharges (I_P, H_α and n_e)
 - This transient process of the plasmas during startup may dominate the efficiency of startup
 - PS: spikes are widely found on STs
ECW startup: experiment (ctd.)

- H_a and the reflected microwave power are found to have connections with these scanning parameters.
- The time and spatial evolution of n_e is essential to understand the physics of startup.

Y Tan, Z Gao and L Wang, Nucl. Fusion 51, 063021(2011)
Main processes
- Ionization by microwaves
- Motion of particles
- Reflection of microwaves

Coefficient estimation based on experiments
Approximations: optical launch and receive
ECW startup: modeling (ctd.)

Experimental results

One spike

Oscillating

B\textsubscript{T} scanning

Simulation results

Y Tan, Z Gao and L Wang, PST 13, 30(2011)
Preliminary results of AW experiments

- **Motivation**
 - To explore the effective current drive method in high dielectric constant (high density at weak field)
 - to verify the theory of low frequency current/flow drive [discussed later]

- **Antenna system**
 - four modules in toroidal, two straps in poloidal for each module
 - BN limiter designed

- **Experimental setup**
 - Rf generator: 20 ~ 50 kW, 0.4 ~ 1 MHz (non-continuous, only two phases stable)
 - Two of four pairs used with \(\pi \) phasing
 - \(|N|=1 \sim 60\%\), \(|M|=1 \sim 15\%\) (no shielding yet)
 - Experimental parameters
 - IP: 30~50 kA
 - \(n_e \): 0.5 ~ 3\(\times \)19 m\(^{-3}\)
 - BT: 800~1200 G

Experimental results (left) and theoretical results (right) of the impedances of antenna shows a similar trend

Y Tan, Z Gao and Y He, FED 13, 30(2009)
Runaway discharges are enhanced when:
- Low IP (~30 kA), low ne (<1E19 m⁻³)
- Accelerated by rf field rather than resonant drive?

Normal discharges
- 50 kA , >1E19 m⁻³
- No effects observed

The Ohm discharge is not good enough
✓ No Experiment in the first half of Year 2012

- ECR source cannot work
- Very limited duration of Ohm discharge
- Abnormal status of rf source /antenna

- Undergraduate course on fusion plasma in the Spring Semester (40 students)

Students in magnetic probe experiments @ SUNIST, Tsinghua Univ.
Recent research progress
- ECW startup: experiment and modeling
- Preliminary results of AW experiments

Efforts for further experiments
- Improvement of Ohm discharge
- Upgrade of rf system
- Future experimental plans

Some related theoretical researches
- O-X-B conversion in ECRF
- Nonlinear ponderomotive force and current/flow drive

Summary
Improvement of Ohm discharge

- **Ohmic field power supply: double swing operation**
 - IGBT switches enable +10 kA → -6 kA

 [+13 kA → -13 kA (60mVs) further]
 - Pulse length of Ohmic discharge is extended to about 10 ms (20-30 ms expected)

- **Vertical field power supply: from two-step capacity discharge to arbitrarily programmable**
 - DSP + IGBT (1.5 kA) solution
Upgrade of rf system: ECR microwave source

- A 5GHz/200kW/50ms microwave system under construction
 - Deposited more inside than old 2.45GHz source
 - Under testing and tuning

The H.V. power supply

The Klystron under test
Upgrade of rf system: AW system

- **rf source**
 - Four-phase oscillator: 4x100kW / 0.4~1MHz
 - Present status: four phasing outputs are unstable/ only (0, π) phasing are stable
 - In the next stage, the following connection methods are employed rather than to build a new rf source

Antenna connections for \(|N|=1\) and \(|N|=2\)

![Diagram showing antenna connections](image-url)
Upgrade of rf system: AW system (ctd.)

- **Antenna system**
 - ✔ Shielding by BN plates (loaned from PPPL, DOE)
 - ✔ Improved Feeders
 - integrated with screening
 - increasing the impedance
 - Antenna current: 400A → 800A
Future plans

- **AW experiments**
- **Investigation of Alfven eigenmodes excited by AW antenna system**
- **ECW /EBW startup using the new 5GHz source**
Outline

• Recent research progress
 – ECW startup: experiment and modeling
 – Preliminary results of AW experiments

• Efforts for further experiments
 – Improvement of Ohm discharge
 – Upgrade of rf system
 – Future experimental plans

• Some related theoretical researches
 – O-X-B conversion in ECRF
 – Nonlinear ponderomotive force and current/flow drive

• Summary
O-X-B conversion in ECRF

- O-X-B conversion might be important for heating/CD by ECRF in ST or other high density (weak field) plasmas

\[5\text{GHz} \sim n_{\text{cutoff}} = 0.3 \times 10^{18} \text{m}^{-3} \]

- O-X conversion: a narrow window around the optimal \(\text{N}_z \)

\[N_{zc}^2 = \left[1 - \frac{(1 - N_{zc} \beta_0)^3}{(1 - N_{zc} \beta_0 + Y)} \right] \left[1 + \frac{(1 - N_{zc} \beta_0) \beta_T^2}{2(1 - N_{zc} \beta_0 + Y)} \right] \left[3 - \frac{(1 - N_{zc} \beta_0)^2}{(1 - N_{zc} \beta_0 + Y)^2} \right] \]

\[\frac{Y}{1 + Y} \quad \text{at } \beta_0 = \beta_T = 0 \quad \text{here, } \ Y = \frac{\omega_{ce}}{\omega} \]

- Motion of electron (current or temperature) shifts the window toward high \(\text{N}_z \) slightly.
- However, if this effect is not considered, the degeneration of O-X conversion efficiency will be 10%

--- Jia and Gao, PoP 18, 10411 (2011)
In collisionless plasmas, all the flux-surface-in forces are depending on the resonant absorbing and none of nonresonant forces by low frequency waves can drive parallel current.

We may enhance the parallel force by increase k_y.

\[F_2 = \left\langle \int d\mathbf{v} \left(\mathbf{E}_1 + \mathbf{v} \times \mathbf{B}_1 \right) f_1 \right\rangle - m \nabla \cdot \int d\mathbf{v} (\mathbf{v} f_2) \]

\[F_{2,z} = \frac{1}{2} \text{Re} \sum_{n,m} e^{i(k_n - k_m)x} \sum_l e^{il(\theta_n - \theta_m)} E_m^* \left(\frac{k_z}{\omega} - i \delta k_x \rho_l \frac{k_y}{\omega} \right) W_l \cdot \mathbf{E}_n \]
- Parallel momentum absorbed by trapped electron may be returned to contribute the current drive in the steady status
- At the mean time, Radial electric field can be generated by resonant trapped electron pinch with rf injection, and then drive the flow
- This mechanism may partially explain the flow drive in LHCD experiment. However, it will be more clear and robust in low frequency cases (such as ICRF FW or AW)
- More self-consistent work ongoing

\[E_r \approx \eta P_D \sum_j n_{\parallel j} \kappa_t (n_{\parallel j}) f_{Dj} \delta (n_{\parallel} - n_{\parallel j}) \]

Gao, Fisch and Qin, PoP 18, 082507 (2011)
Summary

• Research activities on ECW startup, Alfven wave experiments at the SUNIST in recent years are reviewed.
• Future experimental plans of the SUNIST and corresponding engineering efforts are introduced.
• Some related theoretical researches are briefly presented.
• Comments and potential collaborations are welcome.
backups
Conjectures from the scanning results

<table>
<thead>
<tr>
<th></th>
<th>Slew rate of the reflected rf power</th>
<th>Delay of H_α peaks</th>
<th>Maximum amplitude of H_α</th>
<th>Amplitude of the flat top of H_α</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_T</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B_V</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>P_{rf}</td>
<td>0</td>
<td>-</td>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>

Conjectured explanations

- Drift/Formation time of the cut off layer
- Power density @ ECR
- Ionization rate and loss rate
- Microwave frequency

Summary of the scanning results
+-: positive effects, -: negative effects; 0: no effects

2012-07-11 23 SUNIST
Device upgrade: dis- and re-assembling

Mission:
• to install AW antenna and new magnetic probe system
• to open a new manhole window in vessel
• to erase the Siliconized film deposited inside the VV
• to check the CS component

✓ Completed in early 2009
Device upgrade: vacuum chamber

- A manhole window opened for convenience of in-vessel components installing and servicing and as an optical/radiant diagnostic window (CCD camera, reflectometer, spectrometer)
MHD activities: IREs

- IREs widely found on STs
- IREs and the evolution of MHD activities and equilibrium parameters during IREs observed on SUNIST
- A collapse in pressure profile may correspond to the occurrence of IREs

The appearance of IREs strongly depends on the strength of toroidal field
MHD activities: effects of n=1 magnetic field

- **Biased radial magnetic field**
 - L: 210 uH, I: 1 kA, BR max: 37 Gauss
 - Suppress the MHD oscillations
 - Change the spatial structures
 - Slightly increase electron density

The coils to produce biased magnetic field.

The discharge with magnetic field

The discharge without magnetic field

n_e slightly increases when the radial magnetic field is applied

by Prof. FC Zhong’s group in Donghua U.
通过铅屏蔽判断测量的正确性

图 1 探测器除尾部外全部被铅砖包裹，低密度的逃逸放电

图 2 同一位置，相同放电条件，移走探测器前端的铅砖

图 3 移走全部铅砖后，进气较多的放电
Parameter estimation

- **For electrons (100 eV)**
 - Lamor Radius: ~ 0.4 mm ($v_{\parallel} = 0, B = 875$ G)
 - $v_{\parallel}: \sim 6 \times 10^6$ m/s ($v_{\perp} = 0$)

- **For hydrogen gas (300 K, 1E-3 Pa)**
 - $v_{\text{en}}: \sim 3 \times 10^4$ 1/s (3E9 1/s for 1 torr)
 - $v_{\text{ionization}}: \sim 2 \times 10^4$ 1/s (2E9 1/s for 1 torr)
 - $v_{\text{ei}}: \sim 1 \times 10^3$ 1/s ($n_e \sim 1 \times 10^{17}$)

- **For SUNIST ($R_0 = 0.3$ m, $B = 875$ G)**
 - $< v_R + v_{VB} > = \frac{2T}{qR_cB} \frac{1}{B}: \sim 7.6 \times 10^3$ m/s (vertical)
 - $v_{E \times B} = \frac{E}{B}: \sim 1.1 \times 10^3$ m/s ($E = 100$ V/m) (radial)
 - $v_v = v_{||} \frac{B_z}{B_T}: \sim 1.4 \times 10^5$ m/s ($B_z = 20$ G) (vertical)
• 尖峰（等离子体密度、电流）的成因
 － 多次反射是否也有作用？
 － 多次反射的衡量
 • 泄漏的微波功率
 － 微波泄露在等离子体产生后迅速减少至0
 － 微波反射迅速提高
 － →多次反射几乎不存在
The triode oscillator with cables connected

The coaxial cables connected to resonant circuit

The connection between a resonant circuit and a pair of antennas.
阿尔芬波实验系统的调试

- 在等离子体击穿时，阿尔芬波天线作为外限制器存在，但在封闭磁面形成后，天线隐藏在最外层封闭磁面外
阿尔芬波天线对欧姆放电影响不大
（红线：天线安装前，黑线：天线安装后）