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Abstract

Laboratory experiments are described which utilize a set of concentric bias rings
to affect the velocity (flow) shear in the linear HELCAT (HELicon-CAThode)
device at the University of New Mexico. HELCAT is 4 m long, 0.5 in diameter,
with B, < 2.2 kG, and utilizes two plasma sources: an RF helicon at one end of
the device, and a thermionic cathode at the other. With increasing ring bias,
relative to the vacuum chamber wall, it is found that both axial and azimuthal
flow shear change by only a small amount in magnitude, but move inward to the
plasma core from the wall. As bias is increased, drift waves decrease in
magnitude and are eventually fully suppressed, then the Kelvin-Helmholtz (K-H)
mode is destabilized. It appears that the azimuthal flow shear is mainly
responsible for suppression of drift modes, while the azimuthal shear is the
primary driver of the K-H instability. While bias applied to rings at any radii
suppresses drift fluctuations with nearly equal effectiveness, the K-H mode Is
more easily excited by biasing at the plasma edge. Fluctuations show
increasingly chaotic and intermittent behavior as bias increases, up to V ~
10kTe/e, when the chaos disappears, as indicated by a rapid drop in correlation
dimension, and very bursty behavior. Additionally, detached edge “blobs” are
observed in cathode plasmas, but appear to be absent from helicon discharges,
even when other operating parameters (magnetic field, background pressure) are
identical. Experimental results and comparisons with theory are described.

*Work supported by U.S. DoE grant no. DE-FG02-06ER54898



Overview

A detailed investigation of the nonlinear dynamics of gradient-
driven fluctuations in the presence of controlled sheared flows
IS underway in the linear HELCAT device.

Concentric bias rings are utilized to achieve some control over
flow profiles. Both perpendicular and parallel flows are
modified.

Two different plasma sources (RF helicon and thermionic
cathode) are utilized. Fluctuation dynamics of the two plasmas
are significantly different.

Weakly nonlinear drift fluctuations are present in helicon
plasmas. Under biasing, drift fluctuations can be fully
suppressed. Increased bias produces chaotic or intermittent
drift fluctuations, and (intermittent) Kelvin-Helmhotz instability.
No convective blobs have been observed in helicon discharges.

Cathode plasmas exhibit broadband edge fluctuations, and
signatures of convective blobs are observed in the far edge.




Experimental Setup: the HELCAT Device

HELCAT: (HELicon-CAThode)

« Length:4m e B, <2KkG
e Diameter: 50 cm e Plasma Sources: Cathode & RF Helicon
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Dual Plasma Sources

RF Hellcon

" _A;I(Currant \
/ -/ Feeds -

| HeFZt Shield

Side Heat |
Reflector J

Cathode argon plasma




Helicon Plasma Profiles

Typical Profiles of Density and
Density Fluctuations in Ar
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* Low RF power, < 800 W, produces
unstable plasmas

* Increasing RF power, > 1000 W,
iIncreases density with little effect
on gradients
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peak density, but has little effect on
the density gradient
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Cathode Plasma Profiles
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Chaotic Drift Fluctuations in Helicon Plasmas

e Chaos is observed in HELCAT helicon argon plasmas under a

variety of conditions
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Chaotic Fluctuations Show Increased Correlation
Dimension with Increasing Magnetic Field (Helicon)

Top: RF input power = 1400W, Py, =1.5mT, B, = 440G, Correlation
dimension: 2.85
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Chaotic Fluctuations Show Increased Correlation
Dimension with Increasing RF Input Power (Helicon)

Top: RF input power = 800W, Py, =1.5mT, B, = 880G, Correlation
dimension: 2.37
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Correlation Dimension of Chaotic Fluctuations
Changes with Increasing Fill Pressure (Helicon)

Top: RF input power = 1400W, Py, =1.5mT, B, = 440G, Correlation

dimension: 2.85
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Correlation Dimension Changes with Neutral Fill
Pressure (Helicon)

Correl ation D nension with Pressure changes
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 Correlation dimension increases when gas fill pressure increases

from 1.5mT to 2.5mT, then saturates at 3.5mT, and finally decreases
at higher pressure.



Simple Biasing Can Suppress Drift Fluctuations at Low
Magnetic Field (Helicon)
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» Positive bias toward plasma center

* Inner rings connected together, outer rings connected to wall
» Biasing between any pairs of rings almost equally as effective
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Second, Intermittent Instability Driven at Higher Bias

Increasing bias
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e Second mode appears to be a Kelvin-Helmholtz (K-H) Instability, driven by
both axial and azimuthal flow shear at the bias ring ceramic substrate edge
(see flow plots below).

» This instability is driven more easily when bias is applied between outer ring
and wall = flow in “scrape off layer” most important

« KH instability turns on at Av, ~ V,./5, rather than Av, ~ V,; as predicted by
D’Angelo in the collisionless case with no azimuthal flow [D’Angelo (1965),
Phys Fluids 8, 1748]. Azimuthal shear appears to play arole.
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Chaos Observed in Fluctuations During Simple Biasing

 As bias is increased, drift fluctuations are reduced, then become
chaotic as K-H instability develops (Helicon)
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Chaos Observed During Simple Biasing cont. (Helicon)

» Fractal dimension measures dynamical complexity
-Self-similar structure at small scales

Fractal (correlation) dimension

- D > 2 is chaotic

2-D Phase Plot (V=15V)
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Flow and Fluctuation Profiles During Biasing

* Flow measured by 4 tip Mach probe
* All rings biased w.r.t. wall in this case
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velocity shear (arb)

velocity shear (arb)

Changes in Velocity Shear with Bias
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Decay and Growth Time of Fluctuations When
Bias Turned On & Off

Calculation of decay time:

 Curve fit upper and lower envelopes
» Average upper time and lower
1/e growth or decay times
* Need to measure corresponding
growth and decay times of flows
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Convective Blobs in HELCAT

« Convective blobs are seen in the edge of HELCAT cathode plasmas,
but NOT in helicon plasmas, even at the same neutral fill pressure and

magnetic field. Why?
Cathode Plasma lon Saturation Current

......... S —
......... N — [ ]
r R=2cm ] R=8cm
c— L h c— L ]
oo | ] > ]
§£ ] §.<_(. ]
ju R - -1 S = N T
= ] g < i
&H 0 o 2
=5 [ ] c s L ]
SO | | ° O
L e . T, N Lovv v 0 | TR SR R .
0 5 10 15 0 5 10 15
Time (ms) Time (ms)
......... —
R=4cm _ R=10cm Dblob signature
55 23 e
8< £
o BH B
59 5O
33 53 T
e Lo Lo C
0 5 10 15 0 5

Time (ms) Time (ms)



Convective Blobs in HELCAT cont.

« Convective blobs are seen in the edge of HELCAT cathode plasmas,
but NOT in helicon plasmas, even at the same neutral fill pressure and

magnetic field. Why?

- High neutral fill pressure for helicon plasmas

= have produced very low gas fill pressure helicon plasmas (P, =
2x10 Torr), same as cathode plasma

- Steeper gradients (P, n, Tq, @, Ve, g, Vgiagmagnetic) IN cathode plasmas
(e.g. cathode: L, ~ 2 cm, helicon: L, ~ 5 cm)

— create steeper gradients in helicon plasmas via limiters

1. vertical edge limiter = no blobs
5 cm hole disk limiter

2. disk limiter: R =5 cm S A
| [ Em

-B— n w/ limiter

= little effect on profile,
smaller hole needed

Density [x1019 m 3]
- N w N
&
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Convective Blobs in HELCAT cont.

» Convective blobs are seen in the edge of HELCAT cathode plasmas,

but NOT in helicon plasmas, even at the same neutral fill pressure and

magnetic field. Why?

- Edge drift fluctuations in cathode are broadband, i.e. turbulence is
more fully developed

plasmas (due to steep VP + radial force balance)

30
20
10

-10
-20
-30
-40
-50

S_(f) [dB]

Cathode

Power Spectra of |

isat

Fluctuations

‘R=8cm

(dB)

XX

-30

-40

Relative Power, S

“io 100 60

Helicon

= nonlinear solitary structures may be more easily generated in
cathode plasma

- A steeper natural velocity shear layer may exist at the edge of cathode

N
o
1

N
o
T

-50 }

bias

)

0.1

f (kH2)

1
1

=0V

10
Frequency (kHz)




Summary

 Drift fluctuations in helicon and cathode plasmas in HELCAT have
significantly different dynamical characteristics.

* In helicon plasmas, simple biasing of concentric rings can suppress drift
fluctuations easily at low B,. Biasing between any pairs of rings (with outer
rings connected to the vacuum wall, and inner rings connected together) is
nearly as effective.

« Higher bias voltage is required at higher B,. At higher B,, there is arange of
bias voltages where suppression is intermittent, before full suppression is
observed.

At large bias values (> 5-6 x kT /e at 350 G) a second, intermittent instability -
likely Kelvin-Helmholtz - appears. Biasing at outer radii drives this mode
more easily.

 Increasing RF input power, gas fill pressure and magnetic field, causes an
increase in the correlation dimension of drift fluctuations.

» Convective blobs are observed in the outside edge in cathode plasmas, but

not helicon plasmas, even at the same neutral fill pressure and magnetic
field.
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