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Goal

Apply a synthetic PCl diagnostic to a
simulation of a typical DIII—D plasma
to improve the interpretation of
experimental data.
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Phase Contrast Imaging Diagnostic on DIII-D

(old hardware removed
Y for new ECH launcher)

Optics table enclosure
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e 20 W cw CO, beam enters and exits vessel by ZnSe windows

e Beam steered by two in-vessel mirrors




Stands for Imaging

plasma
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Beam passing through plasma acquires spatially dependent phase
shift A¢(R)

e Before phase plate: Ege'™? ~ Ey(1 + iA¢)
e After phase plate Eo(i + iA¢)
o I x |E|*> = EJ(1 +2A9)

Phase shift represents plasma density
e Index of refraction for laser

N=(1-uw/u?)? 1 —w? /2w

e Ap(R) x [(N —1)dz < [n(R,z)dz

e Each detector channel j maps to a “radius” R; (L to beam).
Each signal is s; = [ n(R;, z)dz



PCIl Frequency Limits
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Minimum frequency fmin

e Mechanical vibrations at 2 kHz dominate PCI signal
e Limit frequency to f > 10 kHz

e Currently removed by analog filters

Maximum frequency fmax

e Maximum digitizer rate of 10 MHz (40 MHz with fewer
channels) gives fi.x = 5 MHz
e Limit from S/N may be below 1 MHz

e Plot above from before improved amplifier/filters installed



PCl Wavenumber Limits — ki,

Phase Plate
ZnSe substrate—\ fkikg
Al Coatingx ......... I
focus of unscatteree > ® ¢ SRS
radiation T
focus of radiation > groove
scattered from finite k width

Minimum wavenumber k.in

e Lowest resolvable k set by detector size and magnification
e Lowest detectable k set by groove width
— Scattered light must hit phase plate outside of groove

— Groove must be wide enough to include unscattered
radiation

— Theoretical response verified in lab



PCl Wavenumber Limits — K pax

PCI Detector

CO2 laser spot
magnification set by optic:

or elements
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spacing/0.7 mm C-C

000000000000000
[
(o))
o
®
—t
@D
2]

Maximum wavenumber k.

e Set by optical magnification and spacing of detector elements

o Currently kmax = 25 cm ™ * (kp; ~ 10, kp. ~ 0.1 for

typical parameters with wide variation)

e Have operated with k. 7-30 cm !

e Limit in k. from physical apertures about 40 cm ™! without
modifying diagnostic

e Spectral power decreases at higher k, so effective kpax is
lower

Within these limits, PCl is sensitive to portion of fluctuation
spectrum with finite k£ (perpendicular to PCl probe beam),
k| = 0 (parallel to PCI probe beam)



Typical PCI S(k,f) results show modes with
positive and negative wavenumbers

frequency (kHz)

-20 -10 0 10 20-20 -10 0 10 20
radial wavenumber (cm %) radial wavenumber (cm ~3)

e PCIl data always shows positive and negative kr modes
e Relative amplitude varies depending on plasma
e Slope of peak has units of velocity

— “Velocity” of positive and negative kr branches not the
same

— Higher in H-mode

— Increases roughly with /T



GYRO simulations used to model plasma
fluctuations
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e Nonlinear gyrokinetic turbulence simulation
e Shaped plasmas
e Full toroidal simulation

e Developed at General Atomics



Fluctuating density calculated from
GYRO output

GYRO calculation performed in Miller Geometry
e R= Ry+ rcos(f +sin" ' §sin6)

® z — Krsinb

e Ry, 9, x all functions of r

e Cannot directly calculate (r, ) from (R, z) — developing
fast, accurate numerical coordinate conversion is a major step
In creating synthetic diagnostic

GYRO outputs combined to form physical quantities

e Output records density perturbation dn; for each toroidal
mode number n; as a function of time

N—-1
5n(r, 0) ¢7 t) — Re Z 5nj(7“, 9, t)e—’énj(gb—l—l/(rﬁ))

7=0

05nj€C,V€R

e &ny, v recorded on a grid, interpolated to arbitrary (7, 0)
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GYRO uses experimental profiles
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pe = 0.1 mm, 1/p., = 100 cm™* (with
reduced mass ratio)

pi=3mm, 1/p; =3 cm™*
ps=2mm, 1/p,=5cm !
Drift velocity vy, = 1 km/s

121717,1.25s
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Limited GYRO simulation used for initial tests

Simulation covers 0.54 < r/a < 0.86

— Not adequate for comparison with experimental PCl data
— Synthetic PCI moved inward to study response

— Gyrokinetic equations may fail at some r/a near 1

400 radial grid points, Ar ~ 0.5 mm
Toroidal modes modeled n = 0, 10, 20...150
Data time step 3 us

Simulation time step 0.03 us

Gyrokinetic ions, drift-kinetic electrons
Vmi/m. = 30, reduced for efficiency

Synthetic PCl kmax = 12 cm ™! (kmaxpi ~ 4) because this
GYRO run was not optimized for high k
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Sample GYRO result shows little poloidal, radial
amplitude variation
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e Results sampled over r/a =0.55-0.85, § = —0.5-0.5

e Expect full simulation to show

— Larger fluctuations at larger r
— Ballooning structure (larger amplitude at 6 = 0)
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GYRO results characterized by sampling on grid
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Sample GYRO results on a grid of points
e At least 16 X 16
e Align grid with flux surface or PCl beam

e First calculate S(k, f), then simplified parameters that can
be plotted

e Note that S(k) is [ df S(k, f), not [*°_df S(k, f), so

it is not symmetric under k — —k
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Sample GYRO result shows little poloidal
variation in spectrum

S(k; ,kg,f=80 kHz)
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e Spectrum S(k,, kg) is integrated from f = 10 kHz to
160 kHz

e Peak of turbulence near kg = 1.5 cm ™! (kopi ~ 0.5)
e Avoid the Triangularity Trap
— Creating geometric parameters (especially §) from
experiment results in noisy profiles
— Noisy profiles do not affect turbulence
— Noisy profiles have a large effect on (p,0) — (R, 2)
mapping
— This creates magnetic shear changing spectrum, especially
in k,
— Mappings here have corrected triangularity, but noisy
profiles used in simulation
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Sample GYRO result shows fluctuations reverse
across radius

S(K, ,Kg,f=80 kHz)
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e Spectrum S(k,, kg) is integrated from f = 10 kHz to
160 kHz

e Not clear which nonlinear effects causes propagation direction
to differ from linear instability

e Simulated plasma has no poloidal velocity flow
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Primary Low-£ Instability in this Regime is ITG
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Largest mode in nonlinear simulation is n = 60
Linear GYRO run at n = 60, r/a = 0.7
Time steps above separated by 10 us

Linear mode propagates in ion direction with vy = 3.6 km/s
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Synthetic PCIl Implemented

e Implemented as post-processor analyzing GYRO output

e Line integrate along PCl beam path
1. Find (r,0) for (R, 2)
coordinates along PCl beam
(point spacing < 1 mm)
— Simplified: one chord for each
of 16 detector elements
— Full k response: space chords
over entire width of beam with
several chords per detector
channel
2. Interpolate to find dn at each
point el

. . 1.9 2.0 210 2.20 2.30
3. Sum to perform integration R (m)

z (m)

e To model full k response, perform high pass filtering in k
space and combine sampled chords to represent detector
element shape.

e Use PCI data analysis routines to analyze data
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Synthetic PCI generates signals similar to
experiment
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e Modes at positive and negative wavenumbers seen with
different amplitudes

e Wavenumber increases with frequency
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Different sections of beampath contribute to
different parts of spectrum

frequency (kHz)

S(kD ,k”=0,f)
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Sample turbulence in a 16 X 16 along
beampath, aligned with beam

Component of spectrum S(ki., k| =
0, f) represents portion of turbulence
observed by PCI

Total SPCI signal is equivalent to sum of
these 5 spectra
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Region near LCFS contribute most to spectrum
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e Spectra shown are S(ky, k| = 0, f = 80 kHz)

e One edge contributes to positive wavenumber, opposite edge
contributes signal at negative wavenumber

e Magnitude of dominant wavenumber shifts slightly along
beampath
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Variation along beampath results from change of
angle between beam and flux surface

midplane S(ky,k g,f=80 kHz)
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e Characteristic spectrum S(k,, kg, f = 80 kHz) shown

e Angle between k, and beampath changes along beampath,
hence direction of k) changes in (k,, kg coordinate system

e PCl detects edge of peak at k, = 0, kg = 1.5 cm™*

e At z < 0, PCl sees edge at positive k; at z > 0, PCI sees
edge at negative k
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Conclusions

e Synthetic PCl has been implemented for analyzing output of
GYRO simulation
— Includes proper response at high and low wavenumber
limits
— Required techniques that will be valuable for development
of other synthetic diagnostics

e Simulation of typical plasma leads to improved understanding

of PCl measurement

— Modes detected by PCl where mode propagates
perpendicular to PCl beam

— Direction perpendicular w.r.t. PCl beam depends on
poloidal, not radial, propagation of turbulence

— Apparent perpendicular velocity of PCl modes depends on
w/kg and geometry

— Variation in sampling of k,., kg space results in
fluctuations near LCFS contributing most to PCI signal (in
ITG range)

e Synthetic PCl now used for Alcator C-Mod as well (see
poster by L. Lin)
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Future Work

Run GYRO simulations for DIlII-D plasmas with good PCl
data for comparisons with experiment

Examine GYRO simulations optimized to record high k
modes in output

Extend simulation to as large r/a as possible

Evolve synthetic PCl to include localization via rotating mask
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