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Abstract

In delta-f simulations of tokamak physics, the distribution function is written as

a background plus a small perturbation, where the background is usually taken

to be Maxwellian. A Canonical Maxwellian is a function of particle constants of

motion which reduces to a Maxwellian in the limit of zero orbit width. If the

background is taken to be a Canonical Maxwellian in PIC simulations, the large

orbit contribution to the rapid growth of the particle weights, and the associated

statistical noise, would be eliminated. Another important contributor to

statistical noise in turbulence simulations is the phase-space filamentation which

develops over long times. This should be reduced by including Coulomb

collisions as a velocity diffusion process. A linearized collision operator for

simulating ion-ion collisions has been developed, which consists of a diffusive

test-particle part plus a field-particle part constructed to maintain conservation

laws and have the correct null space. The friction and diffusion coefficients in

the test-particle operator are evaluated using a shifted Maxwellian with a

parallel flow velocity consistent with a Canonical Maxwellian to second order in

poloidal gyroradius. A Langevin method for use in delta-f PIC codes has also

been developed, which is equivalent to the linearized collision operator.
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It provides update equations for the components of particle velocity parallel and

perpendicular to the magnetic field, in the form of acceleration contributions

from the collisional friction and field-particle drag, plus diffusive contributions

modeled by sampling velocity increments in a way consistent with the diffusion

coefficients in the test-particle collision operator. This method uses deterministic

sampling as described in recent work[1], in which the samples are chosen as

quadrature points in approximate evaluations of moments of the Fokker-Planck

Green’s function. This should eliminate the sampling noise which occurs in

random sampling (Monte-Carlo) collision methods.

This work was supported by the US DOE, under Grant No. FG02-04ER54738.

[1] Fred L. Hinton, submitted to Physics of Plasmas

(to be published in April 2008 PoP)

3



Canonical Maxwellian

A Canonical Maxwellian is defined by

f(v⊥ , v‖, ~x) = exp[α(ψ∗) − β(ψ∗)E] (1)

which is a function of the particle constants of motion ψ∗ and E . The Canonical

angular momentum (gyroaveraged) is

ψ∗ = ψ −
I

Ωi
v‖ (2)

where ψ is the poloidal flux function, I = RBT , with BT is the toroidal

magnetic field, and Ωi = eB/mic, the ion gyrofrequency. The total particle

energy is

E =
1

2
(v2

⊥ + v2

‖) +
ei

mi
Φ(~x) (3)

where Φ is the electrostatic potential energy.
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A shifted Maxwellian is defined by

fsm(v⊥ , v‖, ~x) = ni(~x)

[

mi

2πTi(ψ)

]3/2

exp{−
mi

2Ti(ψ)
[v2

⊥ +(v‖ − u‖(~x))
2]}

(4)

where ni is the ion density, Ti is the ion temperature, and u‖ is the parallel ion

flow velocity.

The functions α(ψ∗) and β(ψ∗) can be identified by considering the limit of

zero orbit width, ψ∗ − ψ → 0, when the Canonical Maxwellian must reduce to

a Maxwellian. Since the flow velocity must go to zero for zero orbit width,

α(ψ) = lnN (ψ) −
3

2
ln Ti(ψ) +

3

2
ln
(

mi

2π

)

(5)

where N (ψ) = ni(~x) exp[eΦ(~x)/Ti(ψ)] and β(ψ) = mi/Ti(ψ).

Then we have

ln f − ln fsm = α(ψ∗) − α(ψ) − [β(ψ∗) − β(ψ)]E + β(ψ)
(

−v‖u‖ +
1

2
u2

‖

)

(6)
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Small orbit width approximation

If the orbit width is small but not zero, we can expand α(ψ∗) and β(ψ∗) in

Taylor series; to second order, we have

α(ψ∗) ≃ α(ψ) + α′(ψ)(ψ∗ − ψ) +
1

2
α

′′

(ψ)(ψ∗ − ψ)2 (7)

and

β(ψ∗) ≃ β(ψ) + β′(ψ)(ψ∗ − ψ) +
1

2
β

′′

(ψ)(ψ∗ − ψ)2 (8)

Then, using ψ∗ − ψ = −(I/Ωi)v‖ , we have

ln f − ln fsm ≃ −
I

Ωi
α′v‖ +

1

2

I2

Ω2

i

α
′′

v2

‖

+

(

I

Ωi
β′v‖ −

1

2

I2

Ω2

i

β
′′

v2

‖

)

E + β
(

−v‖u‖ +
1

2
u2

‖

)

(9)
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Parallel Flow

We shall determine the parallel flow by maximizing an entropy expression

defined by

S ≡
1

ni

∫

d3v fsm(ln f − ln fsm) (10)

where f is the Canonical Maxwellian. We use the small orbit width

approximation. After substituting Eq.(9) and carrying out the velocity integrals,

we have

S = −
I

Ωi
α′u‖ − β

u2

‖

2
+

I

Ωi
β′

(

5

2

Ti

mi
+
u2

‖

2

)

u‖ +
I

Ωi
β′ ei

mi
Φu‖

+
1

2

I2

Ω2

i

(

Ti

mi
+ u2

‖

)

α
′′

−
1

2

I2

Ω2

i

[

5

2

T 2

i

m2

i

+
(

4Ti

mi
+

1

2
u2

‖

)

u2

‖ +
(

Ti

mi
+ u2

‖

)

ei

mi
Φ

]

β
′′

(11)
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We assume the flow velocity is much smaller than the ion thermal speed, and

neglect the terms cubic and quartic in u‖ , so that

S = −
I

Ωi
α′u‖ − β

u2

‖

2
+

5

2

I

Ωi
β′ Ti

mi
u‖ +

I

Ωi
β′ ei

mi
Φu‖

+
1

2

I2

Ω2

i

(

Ti

mi
+ u2

‖

)

α
′′

−
1

2

I2

Ω2

i

[

5

2

T 2

i

m2

i

+
4Ti

mi
u2

‖ +
(

Ti

mi
+ u2

‖

)

ei

mi
Φ

]

β
′′

(12)
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We now determine u‖ by maximizing S. By taking the derivative with

respect to u‖ and setting it to zero, we find

u‖ =
I

Ωiβ

[

−α′ +

(

5

2

Ti

mi

+
ei

mi

Φ

)

β′

]

1

D
(13)

where

D = 1 −
I2

Ω2

iβ
α

′′

+
I2

Ω2

iβ

(

4
Ti

mi

+
ei

mi

Φ

)

β
′′

(14)

Using the definitions of α(ψ) and β(ψ), this can be written

u‖ = −
ITi

miΩi

[

∂

∂ψ
ln

(

N

T
3/2

i

)

+

(

5

2
+
ei

Ti

Φ

)

∂

∂ψ
ln Ti

]

1

D
(15)

where

D = 1 −
I2Ti

miΩ
2

i

{ ∂2

∂ψ2
lnN+

(

5

2
+
eΦ

Ti

)

∂2

∂ψ2
ln Ti

−

(

4 +
eΦ

Ti

)(

∂

∂ψ
ln Ti

)2
}

(16)
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Poloidal Flow

The poloidal flow is given by

up = ~u · ~Bp/Bp =
(

~u⊥ + b̂u‖

)

· ~Bp/Bp (17)

where ~Bp is the poloidal magnetic field, u‖ is the parallel component of the flow

velocity, and b̂ = ~B/B is a unit vector parallel to ~B.

The perpendicular component of the flow velocity is

~u⊥ =
c

nieB
b̂ × (∇(niTi) + nie∇Φ) (18)

whose poloidal component is

~u⊥ · ~Bp/Bp =
cIBpTi

eB2

[

N ′

N
+
(

1 +
eΦ

Ti

)

T ′
i

Ti

]

(19)

Also, from Eq.((20)) we have

u‖ b̂ · ~Bp/Bp = −
cIBpTi

eB2

[

N ′

N
+
(

1 +
eΦ

Ti

)

T ′
i

Ti

]

1

D
(20)
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so the poloidal flow velocity is

up =
cIBpTi

eB2

[

N ′

N
+
(

1 +
eΦ

Ti

)

T ′
i

Ti

]

(

1 −
1

D

)

(21)

By using the definition of N (ψ), the poloidal flow velocity can be written as

up =
cIBpTi

eB2

[

∂

∂ψ
ln(niTi) +

e

Ti

∂Φ

∂ψ

]

(

1 −
1

D

)

(22)

where

D = 1 −
I2Ti

miΩ2

i

{

∂2

∂ψ2
lnni+

e

Ti

∂2Φ

∂ψ2
− 2

e

Ti

∂Φ

∂ψ

∂

∂ψ
ln Ti

+
5

2

∂2

∂ψ2
ln Ti − 4

(

∂

∂ψ
ln Ti

)2
}

(23)
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The isothermal case; effect of orbit squeezing

If the temperature gradient is zero, the above expressions simplify:

u‖ ≃ −
ITi

miΩi

N ′

N

1

D
where D ≃ 1 +

I

Ωi

∂u‖

∂ψ
(24)

Therefore, the poloidal flow velocity is

up ≃
I2TiBp

miΩ2

iB

(

∂

∂ψ
lnni +

ei

Ti

∂Φ

∂ψ

)

∂u‖

∂ψ
(25)

If, in addition, |(∂2/∂ψ2) lnni| ≪ (ei/Ti)|∂
2Φ/∂ψ2|, then

up ≃
ITiBp

miΩiB

(

∂

∂ψ
lnni +

ei

Ti

∂Φ

∂ψ

)

(

1 −
1

D

)

(26)

where

D ≃ 1 −
cI2

ΩiB

∂2Φ

∂ψ2
(27)

which may be recognized as the orbit-squeezing factor.
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Nonlinear Collision Term

The distribution function f is assumed to be independent of gyrophase, and only

a function of ~x, v⊥ , v‖ . The nonlinear Fokker-Planck ion-ion collision term is

given by

C[f, f ] = −
1

2

{

1

v⊥

∂

∂v⊥

[

v⊥A⊥ [f ]f − v⊥

(

D⊥ [f ]
∂f

∂v⊥
+D× [f ]

∂f

∂v‖

)]

+
∂

∂v‖

[

A‖ [f ]f −

(

D× [f ]
∂f

∂v⊥
+D‖[f ]

∂f

∂v‖

)]

}

(28)

The Fokker-Planck coefficients A⊥ , A‖ , D⊥ , D× , and D‖ are integrals

containing f . The friction coefficients are

A⊥ [f ] = Γ
∂h

∂v⊥
(29)

A‖[f ] = Γ
∂h

∂v‖
(30)
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The diffusion coefficients are

D⊥ [f ] =
Γ

2

∂2g

∂v2

⊥

(31)

D× [f ] =
Γ

2

∂2g

∂v⊥∂v‖
(32)

D‖[f ] =
Γ

2

∂2g

∂v2

‖

(33)

where Γ = (8πe4i /m
2

i ) ln Λ, with ln Λ the Coulomb logarithm,

and h and g are the Rosenbluth potentials:

h(~v) =

∫

d3v′ f(~v′)

u
(34)

g(~v) =

∫

d3v′f(~v′)u (35)

where u = |~v′ − ~v|.
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Test-particle Operator

The linearized collision operator is obtained by substituting f = F + δf into

C[f, f ], where F is a known function, expanding in δf , and neglecting the term

quadratic in δf :

C[f, f ] ≃ C[F, F ] + C[F, δf ] + C[δf, F ] (36)

The first linear term is the test-particle operator on δf : C[F, δf ] ≡ CT P δf ,

where

CT P δf = −
1

2

{

1

v⊥

∂

∂v⊥

[

v⊥A⊥ [F ]δf − v⊥

(

D⊥ [F ]
∂δf

∂v⊥
+D× [F ]

∂δf

∂v‖

)]

+
∂

∂v‖

[

A‖ [F ]δf −

(

D× [F ]
∂δf

∂v⊥
+D‖[F ]

∂δf

∂v‖

)]

}

(37)

Since CT P is a divergence in velocity space, it conserves particles:
∫

d3v CT P = 0 (38)
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We shall take F to be a shifted Maxwellian:

F (~v) = n(~x)

(

m

2πT (~x)

)

3/2

exp

[

−
m

2T (~x)

(

v2

⊥ + (v‖ − u‖)
2
)

]

(39)

where u‖ is the parallel flow velocity. The Fokker-Planck coefficients evaluated

as above, using F , where the Rosenbluth potentials are given as follows. Using

spherical coordinates w, µ, where w = [v2

⊥ + (v‖ − u‖)
2]1/2, µ = cos θ and θ

is the angle between ~v′ and ~v, we have

h(w) = 2π

∫ ∞

0

dw′(w′)2F (w′)

∫

1

−1

dµ′

u
(40)

g(w) = 2π

∫ ∞

0

dw′(w′)2F (w′)

∫

1

−1

dµ′u (41)

After changing from integration variable µ′ to u, with

u2 = (v′)2 − 2v′µ′v + v2, the last integrals can be easily evaluated and we

obtain single integrals over w′, the particle speed in a frame with the parallel

flow speed u‖ . Using a Maxwellian in this frame, we obtain the same integrals as

given by Chandrasekhar and Spitzer.
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Field-particle Operator

The second linear term in Eq.(36) is the field-particle operator on δf . Rather

than use the exact form, which is an integral operator, we follow the procedure

of Lin, Tang and Lee [PoP 1995], which results in a linearized collision operator

which conserves particles, momentum and energy, and has the correct null space,

i.e. gives zero when acting on a shifted Maxwellian or a shifted Maxwellian with

a perturbation in density or temperature.

We write the field-particle operator in the form

C[δf, F ] ≡ CF P [δf ] ≃
(

r(v⊥ , v
′
‖)v

′
‖P [δf ] + q(v⊥ , v

′
‖)E[δf ]

)

F (42)

where

P [δf ] = −

∫

d3v v′
‖C

T P δf (43)

E[δf ] = −

∫

d3v (v′2/2)CT P δf (44)

where v′
‖ = v‖ − u‖ and v′2 = v2

⊥ + v′
‖
2
.
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Here r(v⊥, v
′
‖) and q(v⊥, v

′
‖) are functions to be determined; we take r

and q to be even functions of v′
‖, like F .

Momentum and energy conservation,
∫

d3v v′
‖{CT P δf + CF P [δf ]} = 0 (45)

∫

d3v (v′2/2){CT P δf + CF P [δf ]} = 0 (46)

are satisfied, assuming r and q satisfy the equations
∫

d3v v′
‖
2
r(v⊥, v

′
‖)F = 1 (47)

∫

d3v
(

v′2/2
)

q(v⊥, v
′
‖)F = 1 (48)

18



In order for the linearized collision operator to have the correct null space,

we require

CT P δf + CF P [δf ] = 0 (49)

for δf = v′
‖F or δf = (v′2/2)F . These conditions determine the

functions r(v⊥, v
′
‖) and q(v⊥, v

′
‖). We need to use the following property

of the test-particle operator: it preserves parity in v′
‖, i.e. CT P (v′

‖F ) is

odd in v′
‖, and CT P (v′2F ) is even in v′

‖.

Then we find that r and q are determined by

r(v⊥, v
′
‖)v

′
‖F = CT P (v′

‖F )/I1 (50)

q(v⊥, v
′
‖)F = CT P (v′2F )/I2 (51)

where

I1 =

∫

d3v v′
‖C

T P (v′
‖F ) and I2 =

∫

d3v (v′2/2)CT P (v′2F ) (52)
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Langevin Equations Equivalent to the Test-particle Operator

The Langevin equations for v⊥ and v‖ are

dv⊥ = A⊥dt+ β⊥ξ1dt
1/2 (53)

dv‖ = A‖dt+
(

β×ξ1 + β‖ξ3
)

dt1/2 (54)

The βs are given in terms of the diffusion coefficients by

β⊥ = D
1/2

⊥ (55)

β× = D×/β⊥ (56)

and

β‖ =
(

D‖ −D2

×/D⊥

)1/2

(57)
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Samples

The ξs are components of sample vectors, which are required to satisfy

〈ξ1〉 = 0, 〈ξ3〉 = 0,
〈

ξ2
1

〉

= 1, 〈ξ1ξ3〉 = 0,
〈

ξ2
3

〉

= 1 (58)

The brackets would denote statistical averages in the conventional

Monte-Carlo method. In the deterministic sampling method, the brackets

denote integrals using numerical quadratures, with the sample points

taken to be the quadrature points [Albright, et al., 2003]. The numerical

quadratures are defined as those which would be used to evaluate

moments of the Fokker-Planck Green’s function:
∫

d3 ~w G(~w, τ )F (~w) = (2π)
−3/2

∫

d3ξ e− 1

2
|~ξ|2F̂ (~ξ) (59)

≃
∑

j

CjF̂ (~ξj) (60)

where F (~w) is a polynomial, F̂ (~ξ) = F (~w),

and the ~ξjs and Cjs are the quadrature points and weights.
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Summary

Topics discussed:

Canonical Maxwellian

Shifted Maxwellian

Parallel and Poloidal Flows

Effect of Orbit Squeezing

Linearized Collision Operator

Test-particle and Field-particle Operators

Langevin Equations

Samples
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