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Abstract

In delta-f simulations of tokamak physics, the distribution function is written as
a background plus a small perturbation, where the background is usually taken
to be Maxwellian. A Canonical Maxwellian is a function of particle constants of
motion which reduces to a Maxwellian in the limit of zero orbit width. If the
background is taken to be a Canonical Maxwellian in PIC simulations, the large
orbit contribution to the rapid growth of the particle weights, and the associated
statistical noise, would be eliminated. Another important contributor to
statistical noise in turbulence simulations is the phase-space filamentation which
develops over long times. This should be reduced by including Coulomb
collisions as a velocity diffusion process. A linearized collision operator for
simulating ion-ion collisions has been developed, which consists of a diffusive
test-particle part plus a field-particle part constructed to maintain conservation
laws and have the correct null space. The friction and diffusion coefficients in
the test-particle operator are evaluated using a shifted Maxwellian with a
parallel flow velocity consistent with a Canonical Maxwellian to second order in
poloidal gyroradius. A Langevin method for use in delta-f PIC codes has also
been developed, which is equivalent to the linearized collision operator.
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It provides update equations for the components of particle velocity parallel and
perpendicular to the magnetic field, in the form of acceleration contributions
from the collisional friction and field-particle drag, plus diffusive contributions
modeled by sampling velocity increments in a way consistent with the diffusion
coefficients in the test-particle collision operator. This method uses deterministic
sampling as described in recent work[1], in which the samples are chosen as
quadrature points in approximate evaluations of moments of the Fokker-Planck
Green’s function. This should eliminate the sampling noise which occurs in

random sampling (Monte-Carlo) collision methods.

This work was supported by the US DOE, under Grant No. FG02-04ER54738.

[1] Fred L. Hinton, submitted to Physics of Plasmas
(to be published in April 2008 PoP)
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Canonical Maxwellian

A Canonical Maxwellian is defined by

fvi, v, &) = expla(y™) — B(¢7)E] (1)

which is a function of the particle constants of motion ™ and €. The Canonical

angular momentum (gyroaveraged) is

. I
v=v Qv (2)
where 1) is the poloidal flux function, I = RBr, with Bt is the toroidal
magnetic field, and ©; = eB/m;c, the ion gyrofrequency. The total particle

energy 1is
€q

£ = (0% +o}) + o) (3)

m;

where ® is the electrostatic potential energy.
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A shifted Maxwellian is defined by

m;

2T; (v)

[vl + (v) — uy (£))°]}
(4)

where n; is the ion density, T; is the ion temperature, and ) is the parallel ion

| 3/2
fsm (v, v), ) = ni(Z) lzﬂ_;:z(w)] exp{—

flow velocity.

The functions a(¢™) and B(¥™) can be identified by considering the limit of
zero orbit width, 9™ — 1 — 0, when the Canonical Maxwellian must reduce to

a Maxwellian. Since the flow velocity must go to zero for zero orbit width,

a(¥) = N($) - SInTi($) + 5 In (52) (5)

where N (¢) = n:(Z) exple®(Z)/Ti ()] and B(¢) = m./Ti(¢).

Then we have

In f 10 fom = a(the) — a(sh) — [8(852) — BEYIE +B() (—vyuy + 2u?)
(6
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Small orbit width approximation

If the orbit width is small but not zero, we can expand a (%) and B(%«) in

Taylor series; to second order, we have

() = a(®) + o (B) (W — ) + 20" @)W —w)* (D)
and )
B() = B(#) + B' () (% — %) + 58" () (s — %) (8)
Then, using ¥« — ¥ = —(I/€)v), we have
In f —In fsr, =~ é 1SI22 "2
I2
+ ( Bo) - 202" ’Uu) E+0 ( Uy + %’lﬁ) (9)
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Parallel Flow

We shall determine the parallel flow by maximizing an entropy expression

defined by

1
= — d*v fsm(In f —1n form) (10)
where f is the Canonical Maxwellian. We use the small orbit width

approximation. After substituting Eq.(9) and carrying out the velocity integrals,

we have
E %;’; <,3;:+uﬁ>a"
- i [ (e i)t (o) s




We assume the flow velocity is much smaller than the ion thermal speed, and

neglect the terms cubic and quartic in u), so that

I U|| 5 I T ) €4

I
S= —qr@u — B4 + g f unt g f -2y
11I? /T 2\ » 11I% [5T? AT T; 2\ €; ’"
Eﬂf( —|—u||)oz - 2Q2 [2m ( )mz’(I) B

(12)
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We now determine u| by maximizing S. By taking the derivative with
respect to u) and setting it to zero, we find

uy — 1 [_a, N (5 T; | e (I)) ﬂ,] 1 13)

where
D 1 .[2 ’” + _[2 (4 T’L + €; @) /3// (14)
= — (87

Using the definitions of ar(¢)) and B(2)), this can be written

81 N +(5+€z)61T 1 (15)
oy -\ T3/ 2T Jay " D

(2

IT;

v = =

where
D=1 IzTi{ lN—|—( 4 ) InT
- mzﬂf 6¢2 " 2 Tz 6¢2 e
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oloidal Flow

The poloidal flow is given by
up = - By/By = ("TL + Bull) - Bp/Byp (17)

where Ep is the poloidal magnetic field, u| is the parallel component of the flow

velocity, and b = B /B is a unit vector parallel to B.

The perpendicular component of the flow velocity is

U, = niZBB X (V(n;T;) + n;eVP) (18)

whose poloidal component is
i, - Bp/By = Ci%pzTi []]VV + (1 + ‘f_rq’) %] (19)

Also, from Eq.((20)) we have
i By, =B[N (e P E] 5
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so the poloidal flow velocity is

CIBpTi

N/

Ur =
P eB?2

|

N

+(1+ -

ed

T’
T,

)%

(1

By using the definition of IN (1)), the poloidal flow velocity can be written as

~

1

D

)

(21)

_cIB,T; | O - e 0% 1
up = ——% [W In(n;T;) + T _&b] (1 D> (22)
where
I*T; ( 82 e 0°®P e 0P 8
b miﬂf{3¢2 it g *Tiogop
5 92 8 ’
+ §3¢2 lnTi_4(—3’¢ lnTi> } (23)
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The isothermal case; effect of orbit squeezing

IT; N'1 I Ou
~ — h D~1+4+ ———
u” miﬂi N D where + Qz’ 8’¢
Therefore, the poloidal flow velocity is
W ~ I2Tin 8 In 1. €; 8‘1’ B’U,“
7 m; Q2B \ 9y T 0 ) O

If, in addition, [(8%/8v?) Inn;| <K (e;/T;)|0?® /02|, then

Up I1: B, (8 lnni—|—ﬁa—q)) (1—i)

where
2 02
D~ cl< 9P
Q; B 02

which may be recognized as the orbit-squeezing factor.

\_

If the temperature gradient is zero, the above expressions simplify:

(24)

(25)

(26)

(27)
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Nonlinear Collision Term

The distribution function f is assumed to be independent of gyrophase, and only
a function of &, v1,v||. The nonlinear Fokker-Planck ion-ion collision term is

given by

Clf, f] = ;{18[0¢A¢[f]f—v¢ (DL[f] + Dx [f] ”)]

v OV

+3i,0“ [An [f1f — (Dx[f] + Dy lf] 5 - )] } (28)

The Fokker-Planck coefficients A1, A}, D1, Dx, and D) are integrals

containing f. The friction coeflicients are

ALlf] = Tt (29)
Al = o (30)
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where u = |v" — U].

=

The diffusion coefficients are

D, [f]
Dy [f]

D, [f]

h(7)

g(7v)

2 B'UJ_B'U“
I 9%
2 3v|2|

where I' = (8we;/m?) In A, with In A the Coulomb logarithm,
and h and g are the Rosenbluth potentials:

= / ds’v, f(?_j,)
u

= /dsv'f(’é")u

(31)
(32)

(33)

(34)

(35)
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est-particle Operator

quadratic in d f:
Clf, fl=C[F,F]+ C[F,6f] + C[df, F]

where

CTPsf = _1{1‘1 [mAL (FI6f — v, (DL 71507 35f + Dy [F]

+8iv“ [An [F]of — (Dx[F] 907 + D\ [F] 6(5f)]

\

The linearized collision operator is obtained by substituting f = F + 0 f into
C|f, f], where F' is a known function, expanding in § f, and neglecting the term

The first linear term is the test-particle operator on § f: C[F,d6f] = CTF s,

96 f
B’UH

NV

Since CT* is a divergence in velocity space, it conserves particles:

/d3v cTP =0

=

~

(36)

o )|

(37)

(38)
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3/2
F(7) = n(Z) (27‘_%(5)) exp [— 21?2&_3.) (’Ui + (v — u||)2)] (39)

e shall take F' to be a shifted Maxwellian:

where wu) is the parallel flow velocity. The Fokker-Planck coefficients evaluated
as above, using F', where the Rosenbluth potentials are given as follows. Using
spherical coordinates w, , where w = [v2 + (v — uj)?]*?, u = cos and 6
is the angle between ¥’ and ¥, we have

1

h(w) = 2 / dw' (w')?F(w') dg' (40)
g(w) = 271'/ dw’ (w’)?*F(w") dp'u (41)

After changing from integration variable p’ to u, with

u? = (v')? — 2v'p'v + v?, the last integrals can be easily evaluated and we
obtain single integrals over w’, the particle speed in a frame with the parallel
flow speed u). Using a Maxwellian in this frame, we obtain the same integrals as

given by Chandrasekhar and Spitzer.
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ield-particle Operator

The second linear term in Eq.(36) is the field-particle operator on d f. Rather
than use the exact form, which is an integral operator, we follow the procedure
of Lin, Tang and Lee [PoP 1995], which results in a linearized collision operator
which conserves particles, momentum and energy, and has the correct null space,
i.e. gives zero when acting on a shifted Maxwellian or a shifted Maxwellian with

a perturbation in density or temperature.

We write the field-particle operator in the form

C[8f, F] = C*P[6f] = (r(vs,v))o| P[6f] + a(vi, o)) E[6f]) F  (42)

where
Pof] = —/d3v v CTTSf (43)
E[6f] = —/d% (v'?/2)CTFsf (44)
where v = v — u|| and v'? =02 4 v|’|2.
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Here r(v1,v)) and g(v_L,v|) are functions to be determined; we take 7

and g to be even functions of vl’l, like F'.

Momentum and energy conservation,
/ &0 o {CTPsf + CTP[5f]} = 0 (45)
/ &3 (v'2/2){CTPsf + CFP5F]} = 0 (46)
are satisfied, assuming r and q satisty the equations

/d3v vl’lzr(vJ_,vﬂ)F = 1 (47)

|
(-

/d3v (v'2/2) q(vi,v))F (48)
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In order for the linearized collision operator to have the correct null space,

we require

CTPsf+CFP[5f] =0 (49)
for 6f =v Fordf = (v'?/2)F. These conditions determine the
functions r(v_, fvl’l) and q(v_ , fvl’l). We need to use the following property
of the test-particle operator: it preserves parity in vy, i.e. ctr (v F) is

. 2 . .
odd in vy, and CTP(v'°F) is even in V).

Then we find that » and g are determined by

r(vy,v)v)F C’TP(vl’lF)/Il (50)
g(vi,v))F = CTP("*F)/L (51)
where

I, = / d*v v} CTP (v F) and I, = / d3v (v'?/2)CTP (v'*F) (52)
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Langevin Equations Equivalent to the Test-particle Operator

The Langevin equations for v and v) are

dv, = A, dt+ B & dt/? (53)
dvoy = Ajdt+ (Bx& + B&s) dt'/? (54)

The Bs are given in terms of the diffusion coeflicients by

8. = DY* (55)

Bx = Dx/B.L (56)
and ,
1/2

Bi = (Dy - D%/D.) (57)
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Samples

The &s are components of sample vectors, which are required to satisty

(1) =0, (&3) =0, (€]) =1, (&1&3) =0, (&3)=1 (58)

The brackets would denote statistical averages in the conventional
Monte-Carlo method. In the deterministic sampling method, the brackets
denote integrals using numerical quadratures, with the sample points
taken to be the quadrature points [Albright, et al., 2003]. The numerical
quadratures are defined as those which would be used to evaluate

moments of the Fokker-Planck Green’s function:
/ d*@ G(w,T)F(w) = (2m) %7 / d*¢ e~ 38
~ ) CiF(&)
J

where F'(w0) is a polynomial, 13‘(5) = F(w),

and the é;-s and Cjs are the quadrature points and weights.

~

—

F(E)  (59)

(60)
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Summary
Topics discussed:

Canonical Maxwellian

Shifted Maxwellian

Parallel and Poloidal Flows

Effect of Orbit Squeezing

Linearized Collision Operator
Test-particle and Field-particle Operators
Langevin Equations

Samples
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