Sensitivity of TEM and ITG Modes to Temperature and Density Gradient Scale Lengths and Collisionality

by

J.C. DeBoo and G.M. Staebler

General Atomics

Presented at the 21st US Transport Task Force Workshop Boulder, CO

March 25-28, 2008

Motivation and Introduction

- Find most sensitive drive terms for trapped electron mode turbulent activity that can be exploited experimentally
- Manipulate the drive terms to turn TEM on and off to allow correlation between TEM activity and turbulent fluctuation measurements, transport calculations and code simulations
- Employ TGLF linear driftwave stability code for sensitivity study of important drive terms
- Use experimentally obtained profiles for reference case in the sensitivity study

Reference Case

• L-mode discharge

 $I_p = 0.8 \text{ MA}$ $B_T = 2 \text{ T}$ $n_e = 1.9 \times 10^{19} \text{ m}^{-3}$

q₉₅ = 6

1 MW ECH

 Fluctuation diagnostics optimized for viewing r/a ~ 0.5

Reference Case Experimental Profiles

L-mode discharge 129475

Normalized Inverse Gradient Scale Lengths

- a/L_{T_e} is larger than a/L_{T_i} at the plasma midradius
- a/L_{ne} is smaller than a/L_{Te} but still a significant contributor to TEM activity

TEMs Have Dominant Growth Rate at r/a = 0.5

 Electron growth rate peaks at wavenumbers associated with trapped electron modes

Growth Rates Are Only Moderately Sensitive To a/LTe

- Value of a/L_{Te} at r/a = 0.5 was arbitrarily reduced from the experimental value to determine the growth rate sensitivity
- Estimate 33% decrease in peak growth rate for factor 2 decrease in a/L_{Te}

Growth Rates Are Insensitive To Density Gradient Scale Length

- Value of a/L_{ne} at r/a = 0.5 was arbitrarily changed from the experimental value to determine the growth rate sensitivity
- Estimate 14% decrease in peak growth rate for factor 2 decrease in a/Lne

Growth Rates Are Insensitive To Collisionality

- Value of v_{ei} at r/a = 0.5 was arbitrarily changed from the experimental value to determine the growth rate sensitivity
- Estimate 15% increase in peak growth rate for factor 2 decrease in v_{ei}

Growth Rate Sensitivity To a/L_{Te} Can Be Significantly Enhanced

- By decreasing the density gradient scale length a factor of 2, the growth rate sensitivity to the temperature gradient scale length can be enhanced by a factor of 3
- At 0.5 x a/L_{ne}, the electron mode growth rate at 0.5 x a/L_{Te} is reduced to where the ion mode dominates at $k_{\theta}\rho_s = 0.56$
- Note at 0.5 x a/L_{ne} the peak growth rate reverses its trend and increases with decreasing a/L_{Te} for a/L_{Te} < 1.5
 - Reducing the density gradient drive makes TEM activity more sensitive to the temperature gradient drive

Growth Rate Sensitivity To a/L_{Te} Is Not Significantly Changed By Varying Collisionality

Experiment Planned Based On Enhancing Sensitivity to a/LTe

 Previous experiment in L-mode discharges showed no change in turbulent activity when a/L_{Te} was reduced by a factor 1.8

- New experiment planned based on enhancing sensitivity to a/L_{Te} by reducing a/L_{ne}
 - run lower q discharge to obtain flatter density profile
 - what is impact on TEM growth rate of reduced shear due to lower q?

Doppler Backscattering $k_{\theta} \sim 4-6 \text{ cm}^{-1}$

Reducing Magnetic Shear Increases Growth Rates and Makes Them Less Sensitive to a/L_{Te}

Conclusions

- For the EC heated, L-mode discharge studied TEM growth rates peak at $k_{\theta}\rho_s \sim 0.5$ 0.6 and dominate over ITG modes at r/a = 0.5
- The growth rates are a factor 2 more sensitive to the temperature gradient scale length than to the density gradient scale length or to collisionality. However, there is not a strong sensitivity to the temperature gradient scale length at the experimental gradient scale lengths obtained.
- By reducing the density gradient scale length a factor of 2, the growth rate sensitivity to the temperature gradient scale length can be enhanced significantly, a factor of 3 more sensitive.
 - reducing the density gradient drive makes the TEMs more sensitive to the temperature gradient drive
- A new experiment has been proposed based on enhancing the sensitivity to the temperature gradient scale length.
 - magnetic shear must be reduced to flatten the density profile
 - this will somewhat reduce the enhanced growth rate sensitivity to the temperature gradient scale length

