Poloidal Velocity of Impurity lons in Neoclassical Theory

by
S.K.Wong, V.S.Chan, W.M. Solomon

Presented at
21st US Transport Task Force Meeting Boulder, Colorado

March 25-March 30, 2008

Background

- Recent measurement of C^{+6} poloidal velocity disagrees with NCLASS in magnitude and direction
- Toroidal velocity of C^{+6} is close to its thermal velocity, violating the assumption of NCLASS
- Theoretical uncertainty can arise from different calculations in neoclassical theory

Goals

- Calculate analytically poloidal velocities in a twoion species plasma with large toroidal flows in the banana regime, with boundary layer correction
- Implement the moment approach of HirshmanSigmar for a two-ion species plasma
- Compare analytic theory, Hinton-Moore's numerical work, and the moment approach
- Compare with measurements in DIII-D

Large Flow Equilibrium

- Circular, large aspect ratio flux surfaces $(\delta=r / R \ll 1) B_{\theta} / B \ll 1$
- To leading order in gyro-radius/scale length expansion, ions share common toroidal (parallel) flow, rigid on each flux surface, related to radial electric field

$$
U=E_{r} / B_{\theta}
$$

- Temperatures are flux functions. Centrifugal force leads to poloidal variations of electric potential and densities:

$$
\frac{e \tilde{\phi}_{1}}{T_{e}}=\delta X_{e} \cos \theta \quad \frac{\tilde{n}_{a}}{n_{a}}=\delta X_{a} \cos \theta \quad X_{e}=\frac{\sum_{a} Z_{a} m_{a} n_{a} U^{2}}{n_{e} T+\sum_{a} Z_{a}^{2} T_{a} T_{e}} \quad X_{a}=\frac{m_{a} U^{2}}{T}-\frac{Z_{a} T_{e}}{T} X_{e}
$$

- Perpendicular flow is sum of ExB and diamagnetic flows:

$$
u_{a \perp}=-\frac{E_{r}}{B_{\zeta}}+\frac{T}{Z_{a} e B_{\zeta}} \frac{p_{a}^{\prime}}{p_{a}}
$$

Linearized Drift Kinetic Equation

- First order parallel flow is obtained from LDKE
- Written in frame rotating with a flux surface
- Guiding center drifts: ExB, gradB/curvature, inertial forces
- Total energy: kinetic, electrostatic, and centrifugal
- Two classes of particles:

Slow:

$$
\xi=v_{\|} / v \sim \sqrt{\delta}
$$

Freely circulating: $\xi \sim 1$

Localization Approximation

- Introduce shifted distribution function where $u_{\|}$is common to all ions

$$
f_{a 1}=\frac{m_{a} v_{\|} u_{\|}}{T} f_{a 0}+\frac{Z_{a} e \phi_{1}}{T} f_{a 0}+f_{a 1}^{\prime}
$$

- Assume:

Assume:
freely circulating ions: $f_{a 1}^{\prime} \sim \sqrt{\delta}$ slow ions: $\quad \frac{\partial f_{a 1}^{\prime}}{\partial \xi} \sim 1 \quad \frac{\partial^{2} f_{a 1}^{\prime}}{\partial \xi^{2}} \sim \frac{1}{\sqrt{\delta}}$

- LDKE for slow ions is simplified:
G.C. drifts: ExB, grad B, centrifugal force Conservation of total energy ε_{a} leads to $\xi^{2}=1-\mu B_{0} / \varepsilon_{a}+\delta_{a} \cos \theta$ where $\quad \delta_{a}=\delta\left(1+\frac{2 T X_{a}}{m_{a} v^{2}}\right) \quad$ is effective trapping factor
- Fokker-Planck operator can be replaced by $\frac{v_{a}}{2} \frac{\partial^{2} f_{11}^{\prime}}{\partial \xi^{2}}$ LDKE is

$$
v_{\|} \frac{\Theta}{r}\left(\frac{\partial f_{a 1}^{\prime}}{\partial \theta}\right)_{\varepsilon_{a}, \mu}-\frac{v_{a}}{2}\left(\frac{\partial^{2} f_{a 1}^{\prime}}{\partial \xi^{2}}\right)_{v}=\delta_{a} \sin \theta \frac{m_{a} v^{2}}{2 T}\left[u_{\|} \Theta+\frac{T}{Z_{a} e B_{\xi}}\left(\frac{n_{a}^{\prime}}{n_{a}}+\frac{\overline{m_{a} v^{2}}}{2 T}-\frac{3}{2} \frac{T^{\prime}}{T}\right)\right] f_{a 0}
$$

Banana Regime

- Introduce scaled variables $\xi_{\star}=\xi / \sqrt{\delta_{a}}$ and scaled distribution function g_{a}

$$
f_{a}^{\prime}=\sqrt{\delta_{a}} g_{a} \frac{m_{a} v}{T}\left[u_{\|}+\operatorname{sgn}\left(B_{\xi}\right) \frac{T}{Z_{a} e B_{\theta}}\left(\frac{n_{a}^{\prime}}{n_{a}}+\frac{\overline{m_{a} v^{2}}}{2 T}-\frac{3}{2} \frac{T^{\prime}}{T}\right)\right] f_{a 0}
$$

It follows: $\quad \xi_{*} \frac{\partial g_{a}}{\partial \theta}-\frac{\sin \theta}{2} \frac{\partial g_{a}}{\partial \xi_{*}}-\frac{v_{a^{*}}}{2} \frac{\partial^{2} g_{a}}{\partial \xi_{*}^{2}}=\frac{\sin \theta}{2} \quad$ where $\quad v_{a^{*}}=v_{a}(\Theta v / r)^{-1} \delta_{a}^{-3 / 2}$

- Solution in banana regime has asymptotic behavior

$$
g_{a} \cong \mp 0.98\left(1-0.92 \sqrt{\left|v_{a^{*}}\right|}\right) \quad \xi_{*} \rightarrow \pm \infty
$$

- Particle flux can be calculated by flux-friction relation

$$
Z_{a} e B_{\theta} \Gamma_{a}=\operatorname{sgn}\left(B_{\zeta}\right) \int \frac{d \theta}{2 \pi} \int d^{3} v m_{a} v_{\|} C_{a}\left(f_{1}\right)
$$

- Integral is dominated by slow ions and can be evaluated using the asymptotic behavior

Ambipolarity and Common Parallel Flow

- The main ion flux is (similarly for impurity ions)

$$
\begin{aligned}
& -Z_{i} e B_{\theta} \Gamma_{i}=2.94 \sqrt{\delta} \frac{m_{i}^{3 / 4} m_{I}^{1 / 2} n_{i}}{\tau_{i I}}\left\{k_{i 0}\left[\operatorname{sgn}\left(B_{\zeta}\right) u_{\|}+\frac{T}{Z_{a} e B_{\theta}}\left(\frac{n_{a}^{\prime}}{n_{a}}-\frac{3}{2} \frac{T^{\prime}}{T}\right)\right]+k_{i 1} \frac{T}{Z_{a} e B_{\theta}} \frac{T^{\prime}}{T}\right\} \\
& k_{i n}=\frac{1}{\alpha \sqrt{\rho}} \int_{0}^{\infty} d x \frac{e^{-x^{2}} x^{2 n+1}\left[G(x)+\alpha G^{\prime}(\rho x)\right]\left(1+X_{i} / x^{2}\right)^{1 / 2}}{1+0.89 \sqrt{\bar{v}_{* i}}}\left[\left[G(x)+\alpha G^{\prime}(\rho x)\right] /\left[x^{4}\left(1+X_{i} / x^{2}\right)^{3 / 2}\right]\right]^{1 / 2} \\
& G^{\prime}(x)=\left(1-0.5 / x^{2}\right)(2 / \sqrt{\pi}) \int_{0}^{x} e^{-y^{2}} d y+e^{-x^{2}} / \sqrt{\pi} x \quad \rho=\sqrt{m_{I} / m_{i}} \quad \alpha=Z_{I}^{2} n_{I} / Z_{i}^{2} n_{i}
\end{aligned}
$$

- The common flow $u_{\|}$is obtained from ambipolarity, $Z_{i} \Gamma_{i}+Z_{I} \Gamma_{l}=0 \quad$ with the result

$$
u_{\|}=-\frac{T}{e B_{\theta}} \frac{\operatorname{sgn}\left(B_{\zeta}\right)}{k_{i 0}+k_{I 0}}\left[\frac{k_{i 0}}{Z_{i}}\left(\frac{n_{i}^{\prime}}{n_{i}}-\frac{3}{2} \frac{T^{\prime}}{T}\right)+\frac{k_{I 0}}{Z_{I}}\left(\frac{n_{I}^{\prime}}{n_{I}}-\frac{3}{2} \frac{T^{\prime}}{T}\right)+\left(\frac{k_{i 1}}{Z_{i}}+\frac{k_{I 1}}{Z_{I}}\right) \frac{T^{\prime}}{T}\right]
$$

Impurity Ion Poloidal Velocity

- Combining parallel and perpendicular flows yields poloidal velocity of impurity ions:

$$
\begin{aligned}
& u_{I \theta}=\frac{T}{e B_{\zeta}}\left[c_{1}\left(\frac{1}{Z_{i}} \frac{n_{i}^{\prime}}{n_{i}^{\prime}}-\frac{1}{Z_{I}} \frac{n_{I}^{\prime}}{n_{I}}\right)+\left(\frac{c_{2}}{Z_{i}}+\frac{c_{3}}{Z_{I}}\right) \frac{T^{\prime}}{T}\right] \\
& c_{1}=-k_{i 0} /\left(k_{i 0}+k_{I 0}\right) \quad c_{2}=-\left(k_{i 1}-3 k_{i 0} / 2\right) /\left(k_{i 0}+k_{I 0}\right) \quad c_{3}=1-\left(k_{I 1}-3 k_{I 0} / 2\right) /\left(k_{i 0}+k_{I 0}\right)
\end{aligned}
$$

- Hinton-Moore's results (weak toroidal rotation) take the same form except $k_{a i}$ are replaced by

$$
\begin{array}{ll}
k_{i 0}^{H M}=\frac{1}{2 \alpha \sqrt{\rho}} \frac{F_{11}(1)+\alpha F_{11}(\rho)}{1+1.26 \bar{v}_{i^{*}}\left[F_{11}(1)+\alpha F_{11}(\rho)\right]} & k_{i 1}^{H M}=\frac{1}{2 \alpha \sqrt{\rho}} \frac{F_{12}(1)+\alpha F_{12}(\rho)}{1+0.37 \bar{v}_{i^{*}}\left[F_{12}(1)+\alpha F_{12}(\rho)\right]} \\
F_{11}(\rho)=\frac{\sqrt{1+\rho^{2}}}{\rho}-\frac{1}{\rho^{2}} \ln \left(\rho+\sqrt{1+\rho^{2}}\right) & F_{12}(\rho)=\frac{\rho}{\sqrt{1+\rho^{2}}}
\end{array}
$$

The Moment Approach

- The basic equations $\left\langle\vec{B} \cdot \nabla \ddot{\Pi}_{a}\right\rangle=\left\langle B F_{a 0}\right\rangle \quad\left\langle\vec{B} \cdot \nabla \ddot{Q}_{a}\right\rangle=\left\langle B F_{a 1}\right\rangle$ are the same as flux-friction relations when δ is small:

$$
Z_{a} e B_{\theta} \Gamma_{a}=\operatorname{sgn}\left(B_{\xi}\right) \int \frac{d \theta}{2 \pi} \int d^{3} v m_{a} v_{\|} C_{a}\left(f_{1}\right) \quad-Z_{a} e B_{\theta} Q_{a} / T=\operatorname{sgn}\left(B_{\xi}\right) \int \frac{d \theta}{2 \pi} \int d^{3} v m_{a} v_{\|}\left(m_{a} v^{2} / 2 T-5 / 2\right) C_{a}\left(f_{1}\right)
$$

- LDKE implies relations between poloidal and parallel flows:

$$
u_{a \theta}=u_{a \|} \Theta-\frac{E_{r}}{B_{\xi}}+\frac{T}{Z_{a} e B_{\xi}} \frac{p_{a}^{\prime}}{p_{a}} \quad \frac{2 q_{a \theta}}{5 p_{a}}=\frac{2 q_{a \|}}{5 p_{a}} \Theta+\frac{T}{Z_{a} e B_{\xi}} \frac{T^{\prime}}{T}
$$

- First assumption: friction integrals can be calculated using

$$
f_{a 1}=\left(m_{a} v_{\|} / T\right)\left[u_{a| |}+\left(m_{a} v^{2} / 2 T-5 / 2\right)\left(2 q_{a \|} / 5 p_{a}\right)\right] f_{a 0}
$$

- Second assumption: radial fluxes are related to poloidal flows:

$$
\begin{aligned}
& -Z_{i} e B_{\theta} \Gamma_{i}=2 f_{t} \frac{m_{i}^{3 / 4} m_{I}^{1 / 2} n_{i}}{\tau_{i i} \Theta}\left[k_{i 0}^{H S} u_{i \theta}+\left(k_{i 1}^{H S}-\frac{5}{2} k_{i 0}^{H S}\right) \frac{2 q_{i \theta}}{5 p_{i}}\right] \\
& -Z_{i} e B_{\theta} Q_{i} / T=2 f_{t} \frac{m_{i}^{3 / 4} m_{i}^{1 / 2} n_{i}}{\tau_{i i} \Theta}\left[\left(k_{i 1}^{H S}-\frac{5}{2} k_{i 0}^{H S}\right) u_{i \theta}+\left(k_{i 2}^{H S}-5 k_{i 1}^{H S}+\frac{25}{4} k_{i 0}^{H S}\right) \frac{2 q_{i \theta}}{5 p_{i}}\right]
\end{aligned}
$$

The Moment Approach (Continued)

- The "viscosity coefficients" $k^{\text {HS }}$ are obtained by examining the manner of solution of the LDKE

$$
\begin{aligned}
& k_{i n}^{H S}=\frac{1}{\sqrt{\alpha} \rho} \int_{0}^{\infty} d x \frac{e^{-x^{2}} x^{2 n+1}\left[G^{\prime}(x)+\alpha G^{\prime}(\rho x)\right]}{D_{1} D_{2}} \\
& D_{1}=1+2.33 \bar{v}_{i^{*}} \frac{G^{\prime}(x)+\alpha G^{\prime}(\rho x)}{x^{4}} \quad D_{2}=1+1.85 \frac{q R}{\sqrt{T / m_{i}} \tau_{i i}} \frac{H(1, x)+\alpha H(\rho, x)}{x^{4}} \\
& H(\rho, x)=\left[3+\frac{2}{\rho^{2}}-\frac{3}{2(\rho x)^{2}}\right] \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-y^{2}} d y+\left[\frac{3}{\rho x}-4\left(1+\frac{1}{\rho^{2}}\right) \rho x\right] \frac{e^{-\rho^{2} x^{2}}}{\sqrt{\pi}}
\end{aligned}
$$

- Solve four linear equations for $u_{i \|}, 2 q_{i \|} / 5 p_{i}, u_{t| |}, 2 q_{I \|} / 5 p_{t}$ from which $\begin{array}{ccc}c_{1} & c_{2} & c_{3} \\ \text { can be found }\end{array}$

Comparing Calculations (Weak Rotation)

- Parameters chosen: $\quad Z_{I}^{2} n_{I} / Z_{i}^{2} n_{i}=1 \quad m_{I} / m_{i}=6 \quad \bar{v}_{i^{*}}=0$
- Significant differences exist
- Moment approach depends on δ

C_{2}

C_{3}

Comparing Calculations (Weak Rotation)

- Parameters chosen: $\quad Z_{I}^{2} n_{I} / Z_{i}^{2} n_{i}=1 \quad m_{I} / m_{i}=6 \quad \bar{v}_{i^{*}}=0$
- Significant differences exist
- Moment approach depends on δ

Comparing Calculations (Weak Rotation)

- Parameters chosen: $\quad Z_{I}^{2} n_{I} / Z_{i}^{2} n_{i}=1 \quad m_{I} / m_{i}=6 \quad \bar{v}_{i^{*}}=0$
- Significant differences exist
- Moment approach depends on δ

Comparing Calculations (Weak Rotation)

- Parameters chosen: $\quad Z_{I}^{2} n_{I} / Z_{i}^{2} n_{i}=1 \quad m_{I} / m_{i}=6 \quad \bar{v}_{i^{*}}=0$
- Significant differences exist
- Moment approach depends on δ

Effect of Toroidal Rotation

*Increase in coefficients drives poloidal velocity in the direction of ion diamagnetic flow

C_{2}

C_{3}

Comparison with DIII-D Experiment

- Taking toroidal rotation into account alleviates discrepany with experiment
C^{+6} Poloidal Velocity Profile

Rotation Parameter and Collisionality

- Toroidal rotation is important in central region
- Analytic theory is marginal at best with regard to collisionality

If Steady State with no ion Sources is Assumed

- then $\Gamma_{I}=\Gamma_{i}=0$
- which leads to $u_{I \theta}=\left(\frac{5}{2}-\frac{k_{I I}}{k_{I 0}}\right) \frac{1}{Z_{I} e B_{\xi}} \frac{\partial T}{\partial r}$
- All calculations predict reasonable agreements with experiment

Conclusions

- Taking toroidal rotation into account alleviates discrepancy with experiments
- Significant differences exist among different neoclassical calculations
- More accurate numerical work needed for experimentally relevant collisionality and magnetic geometry

