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abstract

The importance of rotational stabilization of resistive wall modes (RWM) has prompted more
attention to momentum transport studies, particularly to momentum dissipation due to neoclassical
toroidal viscosity arising from non-axisymmetric error fields. Some effects of MHD-induced error
fields were discussed in Refs.[1-3]. An additional important aspect of trapped particle dynamics has
recently been stressed: a positive correlation between neoclassical and anomalous transport through
generation of zonal flows in non-symmetric toroidal plasmas [4,5].

In a recent formulation for the neoclassical viscosities in general toroidal plasmas [6], it was shown
that three mono-energetic viscosity coefficients [M*, N*, L*] are required to describe the full
neoclassical properties of the plasmas. This differs from axisymmetric neoclassical transport codes
such as NCLASS, and the additional complications require systematic investigation. For this purpose,
these coefficients in two low aspect ratio stellarators (NCSX and QPS) have recently been
investigated [7] with various numerical [6] and analytical [8] methods. Even though the basic
framework of the unified theory [6] covers both tokamaks and stellarators, some further studies are
still required to unify the analytical approximation techniques for the viscosity. Beginning with the
recent transport analysis described in [7], the analytical theory for the 1/v regime is extended to
include both the MHD-activity-induced error fields [1-3] and the ripple fields in stellarators.
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Outline (1)

1. On Basic Framework
(1) Comparison of two methods to clarify the validity of the 13M
approximation for the flux surface averaged part
(BeVom,)~(n,)e (BE,)=(BF ), (BeVo0,)=(BF,,)
H.Sugama and S.Nishimura, to be published in Phys.Plasmas (2008),
NIFS report NIFS-885

(2) The poloidally and toroidally varying part determining the impurity transport
PS PS PS _ PS
beVp | = b+Vo ” s

|I al’

2. Neoclassical viscosity coefficients in NCSX and QPS
S.Nishimura, D.R.Mikkelsen, D.A.Spong, et al., to be published in
Plasma Fusion Research (http://www.jspf.or.jp/PFR/)

The boundary layer in v-space causing coupling effects between the bounce
averaged motion of ripple-trapped particles and the non-averaged motion of
untrapped particles (collisional entrapping/detrapping)

— 1/v!/2 diffusion, BS currents, rotations



Outline (2)

3.  An extension of the 1/v regime theory to include |m—qn| ~] modes in
B-field spectra. [ B=X B, cos(m6-n{), q: safety factor ]
For future applications to the plasmas with MHD-activity-induced error fields.
(1) Physics in the vicinity of islands in helical/stellarator devices
(2) Rotational stabilization of RWM in tokamaks
for e.g., arecent “NTV” experiment in NSTX

0
E<nimiBT.Vi> = —2<BT'V°na>+ SM

(3) Zonal flow in helical/stellarator devices
(Sugama-Watanabe, 2005, Mynick-Boozer, 2007)

4. Summary



A roadmap toward the full neoclassical fluxes

B data of LHD(N=10), H-J(N=4), NCSX(N=3), QPS(N=2)
%v, l//', Be(Boozer)’ Bé«(Boozer), B,
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The flux surface averaged part of the moment equations

BeVert V—n.e (BE, = (BF 2-ion-species (NIFS, 2003)
( ar-MaeaBE) = (BF ja1) o8 (ORNL, 2005)

multi-ion-species (20077)

(BeVe0 ;) = (BFj/42)

H.Sugama and S.Nishimura, Phys.Plasmas 9, 4637 (2002)
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A comparison of two moment-equation methods
with generalizations by extending to
21M, 29M approximations

There are two analogous methods known:

H.Sugama & S.Nishimura, Phys. Plasmas 9 (2002)
M.Taguchi, Phys. Fluids B 4(1992)

Both papers showed how to take account of collisional momentum
conservation (of the Landau collision term) in multi-species plasmas in
obtaining the transport coefficients from outputs of commonly used
numerical codes such as the DKES, in which the pitch-angle-scattering
collision model is used.

However, it is still important to address the theoretical relation between
the methods as well as their accuracies from the viewpoint of practical
applications.

As a result of these generalization and comparison, we will show here the
validity of the 13M approximation in Sugama-Nishimura method in 2002,
and that it is more suitable for quasi-symmetric systems and tokamaks.



6 10*
g 5 10*
B 4 10*
s 310°
£ 210
Y 4
A 110
m=
s 0

1104

2 10*
(a)

Applications of Sugama-Nishimura method

Spontaneous plasma flows
on the flux surfaces
[Spong, PoP(2005)]
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Radial electric fields in QPS

[Spong, PoP(2005)]
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10* 103 10- 101 10" 10l



Common basis of the two methods (Sugama-Nishimura, Taguchi)

Drift Kinetic Equation (DKE)

, , 1 : B
Viia — Calfa) = TfaMr (—Ufr [Xal + Xao (1’2 - 3)] + Ea<BQ>1/2iéXE)

Collision C,(f.1) = > [Cap(£i". forr) + Capl farr. i1~ )+ VHL far = fur )
term b

Legendre-Laguerre expansion of the distribution function  gupstitute

F(x.v.) ZF 0.8 FOxu.0 = B2 / dnP() F (%, v, )
—1
Jd3v moments (1) 9 2 Gl 5
with weighting Ja1 = o {xa fam [tta + _p— (i‘a — 2) + - ]
functions such as 2“ . ‘
Iy (1+1/2 4
oL = trafou 3 gL a2)
a =0

Relations of Wi I af (j=0,1,

'9Jmax)9 al’ aZ’XE




Relations of u,,;, I

(] 0,1, ..., 7mad)s Xg10 X0 XE

Sugama-Nishimura

Taguchi

Moment Equations :

Jma.x

Z M g (Bujar)/{B?)

+ Aj_,_l:lXal *‘NT;—H;QXGQ

.}rna.x

- Z Z Z?—?—l,k—i—l(Bquk) + 5j072.aea (BQ>1/QXE

b k=0

Radial Transport Fluxes :
Jmas

FE? = Z *‘N"qu+1:k+1(B'“'Ilak>/<Bg>

k=0
a
+ LjiXa = Ly 0 Xa

Moment Equations :

Jlna.x

Z A?+1,k+1(B'“Ilak>/<82>

k=0
a a
+ B 1 Xa1 — B o X a2

- Jlna.x J max

- : Z 3+1 m-+16m Z Z l?r?+1,k+1<Bu'ku>/<B2>

b k=0

t Zja€ XE/<BQ>1/2

Radial Transport Fluxes :

Jmax j'um.x

bn __ fa ‘
raj = E J\’j+1=k+1<Bu'||&k n E , 3—|—1m+1
ﬂf.

k=0

jmax

X Cm Z Z Z-ﬁ?ﬂ,kﬂ(Bullbk)/(BQ>

b k=0

+ L5011 X1 — L5, 19Xa2

J max

&> Neoclassical transport matrix : &
aj(j=0 1 ")jmax)

It expresses u,;, I,
as liner combinations of X , X ,, X;.
: maximum Laguerre Order




When solving the moment equations,

(1) By using numerical solutions of the approximated DKE (by the
DKES), we obtain “coefficients” in the moment equations. In
traditional moment equation approach (Hirshman-Sigmar, 1981,
Shaing-Callen, 1983), this kind of coefficients 1s called as “viscosity
coefficients”.

(2) The Sugama-Nishimura method and the Taguchi’s method use
different weighting functions.
— They result in different moment equations.

Jmax—°° - Both methods are equivalent
finite ;.. : They give different results. (Which is more correct ?)

For arbitrary; .. 2>1, Sugama-Nishimura method gives :
(1) The intrinsic ambipolar condition in the symmetric limits
(2) Transport coefficients satisfying the Onsager symmetry

(But Taguchi’s method breaks these conditions in cases with finitej . .)



Comparison of the two methods in applications for
axisymmetric limit 0B/0{=0 (tokamaks)

The asymptotic banana regime viscosity coefficients can
exactly be obtained by analytical solutions.

The neoclassical transport of 10n
in a small mass ratio approximation.

poloidal particle wg | el Xy | Coo
and heat flows 2 g, (B | ¢,
radial heat fo ngmTic2I?

b _ b _ v
= _Tirl B C.qfc Eg(f)2<BQ>Tﬁ

Coe Ci1p €y numerical factor to be determined by the parallel force balance.

Xo

diffusion

In this axisymmetric limit (tokamaks)
— Sugama-Nishimura method coincides with Hirshman-Sigmar formulae



Poloidal flows and the radial heat diffusion in the banana regime

Dependenceon j .= 113M), 2 (21IM), 3 (29M)

(a) Poloidal particle flow

(c) Radlal heat diffusion

(b) Poloidal heat flow
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The radial particle diffusion in the banana regime

In Sugama-Nishimura method:

The j7=0 moment coincides with the usual parallel force balance equation.
For arbitrary j ., the intrinsic ambipolarityEeaF , = 0 1is retained.

a

In the axisymmetric limit the ion particle diffusion due to ion-ion collisions

should be I'? =0.

(Note that this small mass ratio approximation neglecting ion-electron collisions

is only that for a test of the theories.)

Incorrect ion diffusion C’

Taguchi’s formulas given for stellarators: 0
The intrinsic ambipolarity in the symmetric systems
cannot be satisfied by finite j_ . values.

-0.1}
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Summary of the comparison

Two methods proposed for the neoclassical transport in helical/stellarator
devices (Sugama-Nishimura and Taguchi) are derived from common
identical basic equation with the momentum conserving collision operator.
They can be written for an arbitrary truncation number (j,,.) of the
Laguerre expansion, even though the original papers described only the case
of retaining the first two terms in the expansion.

Sugama-Nishimura method and Taguchi’s should lead to the same results
in the limit of j . —>. However, different results are given from these
methods for the finite value of j_ ..

Sugama-Nishimura method with arbitrary truncation numbers of j . ,.2>1
gives the intrinsically ambipolar particle fluxes in symmetric limits, and
transport coefficients with the Onsager symmetry.

Ref: Sugama & Nishimura, to be published in Phys. Plasmas (2008).



Local structure of the flow pattern
before the flux surface averaging has a winding determined by

V‘(nazu//az) - _V‘(nauJ_a)

E x B + diamagnetic

+ neoclassical parallel - E x B + diamagnetic

+ Pfirsh-Schluter 3 =+ neoclassical parallel

+ Pfirsch-Schluter /

0.0e+00 7.7e+02 1.5e+03 2.3e+03 0.0e+00 3.3e+03 6.7e+03 1.0e+04

Even though it is well known that the radial diffusions are dominated by the turbulent
transport, plasma flows along the flux surfaces will be determined by the neoclassical
processes. The momentum balance including friction forces for the flows determines
impurity accumulation and/or shielding.

In contrast to toroidally rotating tokamaks, however, this winding structure will not be
simply determined by the incompressible condition V-u,=0, V-q,=0.



I=0,1 and j=0,1,2 Legendre-Laguerre moments of DKE

<pa> 0

S Njlwn O

Ml o - . (1) .
(nq) 10 0 oy
2q 3 Vs xB .. a .
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o) | 2 8. (1)
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Particle and
energy
conservations

Parallel force
balances

It can be solved by a Fourier expansion method
for general toroidal configurations.



Numerical examples for the poloidally and toroidally
varying part of the moment equations

iffusi ' s ] [{URa) | G are]x
P-S diffusion coefficients I e I [ bl}
da 1T,) | (UF,,,) 2 L5y (@55 [ Xpo

( LPS )ba ( LPS )aja

B=B[1-¢, cosOy+&, cos(LOz—NEg)], (L,N)=(2,10),
B,=1T, }=0.15Tem, =0.4Tem, B,=0, B éu=4Tom.

2 ion-species plasma H +Ne!?" with a ion density ratio corresponding to Z 2. 74, T.= Ti=1keV.

13M approximation w1thuiilergy scattering effects _ with £ =5kV/m
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M, N, L matrix and
flux surface averaged parts of the parallel momentum balance

determining (n,u,,B), {q,,B) as the integration constants of
Vo(nau//a), VOQ//a (H.Sugama and S.Nishimura, Phys.Plasmas 9, 4637(2002))

- _
(n ><”a”naB>/ (5%)
<§'$'ga> (Mg Mg, Ny Nyl 2 (01aB)/(B) Given by an approximated DKE
(B- ; ) |_[Mir Mgz Ny Nes | 5(pa) (numerically and/or analytically)
Id Na N Lo Lo || 1 9(pa) , 9(®) | (with energy integrations)
_qsn/<Ta>_ _Na2 Na3 La2 La3_ <na> ds ¢ ds
: T,
In symmetric cases — a<a )
s ) _
L, <N <M, - - 1
I aj aj . } nu, B
¥ Oup |:Mal Ma2i|_ Wl <”b>< ! >
b <BZ> Ma2 Ma3 _Zg{) _lgé) 2 < B>
: : 5(p,) D
combined with | 2\Pb i
the friction-flow relation 1 (p.) , (D) |
i _|:Nal Na2i| <na> ds ‘ ds n Na€q <BE||>
Na2 Na3 B E)(Ta> 0
: : : d
a, b=e, DT, T+, He", He?", Li¥, Li*", Li*, ... - ’ ;

A non-diagonal coupling between particle species is introduced in this step.



A Benchmarking Example in NCSX

GBS)=—< B2> N*/M * chip=0.1178403
chip=0.1178403 chip=0.1178403 NCSXMS0 psip=0.2513444
5 NCSX-M50 5s=0.26  psip=0.2513444 NCSX-M50 s=0.26  psip=0.2513444 —0.26 --0-- IL/:L(II?ES(S)))(Es/w())
10 L A L - 20 R 101 - rrrmr—rrrem—| ——— NEO-+analitical 1/sqrt(nu)
F ] 3 L* (analytical)(banana-platez
M (Boozen) ; e
-.0-- M*(DKES) 100 | - -o- - L¥(DKES)(Es/v=3.0e-4T)
-3 i E - -+- - L¥(DKES)(Es/v=1.0e-3T)
107 L 15 - b E o - - A- - L*(DKES)(Es/v=3.0e-3T)
10" ¢ . E
E < E
M* : L* E e
4 (BS) Analytical w/o ) g +
_sz] 107 £ G 10 + boundary layer correction \, [mﬁlT_z] 10° 3 e 3
S NEO+
GBS yXaalytioaD 103 L analytical
r ana 1ca E
10° L DKES 5 [ | o - GBS)DKES) Esn=0) : 1/sqrt(nu)
L | —o— G(BS)(DKES)(Es/v=1.0e-4T) 0 [
. ] | | —o— G(BS)(DKES)(Es/v=3.0e-4T E ans Py 3
analytical 1 L | —— GEBS)(I)KES)EP_Z - .03-3'1‘; E analytical E
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(1) The ripple-trapped/untrapped boundary layer, the distribution function is BeVG,, #0.

For this kind of distribution function components requiring treatments in the 3-D phase space
(poloidal angle 6, toroidal angle , pitch angle ¢,), the approximated analytical solutions
must be used as effectively as possible. For the 1/v'2 diffusion, we have to consider
procedures to use the analytical solutions and the numerical solutions for the bounce- or
ripple-averaged parts BeV Gy

a(an)=O as complimentary methods.

(u=const)
(2) The N* given by the DKES transiently becomes larger at v/o~10->m~! compared with

the analytical formula. It is peculiar to the quasi-axisymmetric configurations where the 1/v!/2
component becomes comparable or dominates over the 1/v component in the radial diffusion.



A benchmarking example in QPS
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By D.A.Spong, in 15th ISW 2005

|B] at r/a = 0.20 (blue: B < 1T, purple: B > 1T)
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|B| at r/a = 0.50 (blue: B < 1T, purple: B > 1T)
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Effects of these | m—nq |~1 modes

(1) In both of tokamaks and stellarators:
The bounce center of toroidally trapped particles drift across the flux surfaces.

The theory for tokamaks by K.C.Shaing, et al.,

PRL 87, 245003 (2001), PoP 9, 3470 (2002), PoP 9, 4633 (2002),

PoP 10, 1443 (2003), PoP 10, 4728 (2003), PoP 11, 625 (2004), PoP 11, 5525 (2004),
PoP 12, 072523 (2005), PoP 13, 022501 (2006), PoP 14, 024501 (2007)

His theory had recently been tested in NSTX experiments. The modes
W.Zhu, S.A.Sabbagh, R.E.Bell, et al., PRL 96, 22002 (2006) @:
change
(1/v)
(2) For ripple trapped particles Wy _ By [(%‘gg + %\/ 1— o+ Ei%‘j

. a a !
in stellarators H e,VpY 2
2 K*E(K) o2 aeH}

3 E() - (1-kDK(K) 20
For existing stellarator codes, the “full torus” calculation including this B-structure means:

(1)  For variational methods (DKES): It is substantially an increase of
toroidal Fourier mode range for B and the distribution function.
LHD: x10, W7X: x5, HSX: x4, NCSX:x3, QPS: x2

(2) For field line integral methods (NEO):
It will require the trace of the field line for the infinite length.



The role in the rotations
and calculating method

An equivalence of the [M_, N, L | matrices with the poloidal and
toroidal viscosities in toroidal momentum balance analysis in
the tokamak experiments.
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Formulas for components due to
non-bounce averaged motions
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f S.Nishimura, H.Sugama, and Y.Nakamura,
Fusion Sci.Technol.51, 61 (2007)

These are applicable for arbitrary B, , spectra even when including the MHD-activity-
induced error field with jn—gn| =1. (Note that m—gn=0 of 1/B? in the Boozer and

of B2 in the Hamada coordinates are forbidden.)

In contrast to them, the formulas relating to the bounce averaged motions (L* _ ),

L*,_4 5, N* ) assuming Ng—L>>1 must be extended to include the W—qn =~] modes.
(—1/2) (boundary)



The analytical method for stellarators

By integrating it,
Bounce averaged DKE for 98 9,0 oB .,
the toroidally trapped particles (1/V)  a6,, ¢ (Buymmarc) 9%

ou e, X'VD 45 910 40

9 (¢dl 3G 9 G y
m._rc axisymmetric
—Vvpmy, a—,u((ﬁ—v//) aXa = — Cﬁv/,dl y 172
,u B ‘U ea% aCO |U | _ ’U[l AUBaxisymmetric )
| = -
w

B axisymmetric = B() {1 + eT(GB )}

The integral period length for CﬁdOB is determined by B/B,=1+¢&(6)+ey(6p)

(Since the contributions of jn—gnl >>1 modes become small in this integral,
modes of lm—qn| >Ng—L>>1 can be omitted. )
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1 B

1 n= axisymmetric )

a
vh trapped (j) | (g |
( B axisymmetric )

Though this integral can only be obtained numerically, this estimation is still
easier than applications of existing methods for stellarators (DKES, NEO).

ES
LovHp) <

5 d6,



Summary

The basic framework proposed by us is most favorable for studies of

tokamaks with the MHD-activity-induced error fields and quasi-
symmetric helical systems. It determines all of neoclassical quantities
consistently in arbitrary collisioanlity regimes in general toroidal
configurations.

Not only existing numerical tools for stellarators can obtain the
required viscosity coefficients, but also simple analytical
approximations for the DKE can be used for this purpose.

Tests of these analytical formulas are being carried out in various
helical/stellarator configurations.

For the test of an extension to include the MHD-activity-induced
error fields in the analytical formula for the 1/v regime of stellarators,
low aspect stellarator configurations with few toroidal periods seem to
be favorable as the first step, in viewpoint of the toroidal Fourier mode
range of the DKES. This extension will be useful for studies of
physics in the vicinity of islands in helical/stellarator devices.



