Fast Electron Driven Alfvén Eigenmodes In the Current Rise in Alcator C-Mod

J A Snipes, P T Bonoli, R R Parker, A Schmidt, J Sears, G Wallace

MIT Plasma Science and Fusion Center, Cambridge, MA USA

JA Snipes, 21st Transport Task Force Workshop, Boulder, CO

26 March 2008

C-Mod

Lower Hybrid Generates Fast Electron Driven Modes in the Current Rise

- Very early injection of LHCD starting at 0.02 s excites rapidly bursting high frequency modes driven by fast electrons in the current rise
- The frequencies of these modes are in the range of 100 kHz 700 kHz with increasing frequency as q falls indicating Alfvén eigenmodes
- ➢ AE drive depends on the fast particle energy not the mass so that fast electrons can also drive AEs unstable
- Fast electron driven TAEs were first observed on Compass-D with combined ECH+LHCD [1]
- Lower frequency fast electron driven fishbone-like bursting modes have also been observed driven with ECCD on DIII-D [2] and with LHCD on FTU [3]

[1] M Valovic, *et al*, 2000 *Nucl Fus* **40** 1569
[2] K-L Wong, *et al*, 2000 *Phys Rev Lett* **85** 996
[3] F Zonca, *et al*, 2007 *Nucl Fus* **47** 1588

Lower Hybrid Heating in the Current Rise

Hard x rays + ECE indicate LH generates a fast electron tail

Alcator

C-Mod

- High frequency TAEs are observed from 0.02 to 0.035 s
- ➤ Large non-thermal ECE signals indicate effective pitch angle scattering from v_{||} to v_⊥ [4]
- LHCD also drives very low frequency m=3, 2, n=1 tearing modes that can cause disruptions

[4] Fuchs, et al, 1985 Phys Fluids 28 3619

JA Snipes, 21st Transport Task Force Workshop, Boulder, CO

26 March 2008

Low Elongation Outer Wall Limited Plasma

Alcator

C-Mod

> Mode frequency increases with time often with three frequency bands

Time between bursts also increases with time as n_e and q profiles evolve JA Snipes, 21st Transport Task Force Workshop, Boulder, CO
26 March 2008

Toroidal mode numbers are in the range of n ~ 1 – 6
 Modes rotate in the electron direction (counter-I_p)

→ Mode frequencies fit well $f_{TAE} = v_A/(4\pi qR)$ for intermediate q values and bursts occur at ~ integer and half-integer q values from 11 down to 5.5

> Three frequency bands scale as n=2, 3, 4 but cannot have $f_{\phi} = 100 \text{ kHz}!$

Now suppose f_{ϕ} is small and each frequency band has its own q value. Then the mode frequencies fit well to q values between ~11 and 3.5

> Why are there simultaneous bursts at these particular q values?

Early TAEs have resonant q from 11 to 3.5 before 0.035 s

Alcator

- Resonant q values track edge q time evolution and indicate resonances are deep inside the plasma
- 5 ➤ Lower q surfaces may not have yet entered the plasma

JA Snipes, 21st Transport Task Force Workshop, Boulder, CO

Mode Frequency vs TAE Frequency at q_{edge}

Minimum mode frequencies scale approximately as f_{TAE} at q_{edge}/1.5
 Maximum mode frequencies scale approximately as f_{TAE} at q_{edge}/3.0

- Measured profiles from Thomson scattering show a very hollow electron density and peaked electron temperature profile
- A hollow density profile could account for nearly a factor of two change in TAE frequency across the profile at the same resonant q

- Assuming a reversed shear q profile the measured hollow density profile can provide nearly a factor of two change in TAE frequency
- The measured TAE frequencies can be modeled with this q profile within the errors on the density profile
- \succ The three freq bands then correspond to the same rational q surface

Frequency of Bursts Decreases with Decreasing Edge q Alcator C-Mod Burst Frequency vs Edge q (Hz) f_{burst}

 \succ Frequency of bursts decreases with decreasing edge q > There are fewer low order rational surfaces at lower q

q_{edge}

Mode Amplitude Increases with LHCD Power

- \succ Mode amplitude increases with increasing P_{LH}
- > Modes are absent with $P_{LH} = 0.2 \text{ MW}$
- Indicates fast electron drive increases with lower hybrid power as expected

Alcator

C-Mod

Eigenmode Stability Depends Strongly on LHCD Phase

- > Modes are strongest at 90° phasing ($n_{\parallel} \approx 2.3$)
- > Some modes are visible at 60 ° phasing ($n_{\parallel} \approx 1.55$)
- ➤ Modes are absent at 120 ° phasing ($n_{\parallel} \approx 3.09$) where current drive is weak and the electron distribution function is less energetic

Alcator C-Mod

Radially viewing hard x ray camera shows a broad profile with significant counts out to at least 80 keV photon energy

Average hard x ray photon energy increases from 20 – 35 keV during the high frequency modes

JA Snipes, 21st Transport Task Force Workshop, Boulder, CO

High Frequency Mode Satisfies Resonance Condition

- ➢ Precession drift resonance condition for deeply trapped particles maximizes the fast electron drive when ω ≈ ω_d so that [4] T_h(keV) ~ 2.52 f_{mode}(kHz) B(T) r_s R₀/(nq)
- → Using $r_s=0.1$ m, the n=2 frequencies in the shot of interest give T_h comparable to the measured hard x ray photon energy vs time
- This resonance condition may also explain why the modes go away despite continued LH heating, since lower q requires higher fast electron energies to continue to drive the modes unstable
- Constrains the fast electron distribution function

[4] F Zonca et al, Nucl Fus 47 (2007) 1588

A High Perpendicular Temperature Results from Pitch Angle Scattering of the Parallel LHRF-Generated Electron Tail

➢ From Fuchs *et al.*, Physics of Fluids **28**, 3619 (1985) Eq. (37):

$$\frac{T_{\perp}}{T_e} \approx \frac{(\alpha_i - 1)(\mathbf{v}_2^{\alpha_i + 1} - \mathbf{v}_1^{\alpha_i + 1})\mathbf{v}_1^{2 - \alpha_i} - \mathbf{v}_1^2(\mathbf{v}_2 - \mathbf{v}_1)(\alpha_i^2 - 1)}{2(\mathbf{v}_2 - \mathbf{v}_1)(\alpha_i^2 - 1) - (\alpha_i + 1)\mathbf{v}_1^{2 - \alpha_i}(\mathbf{v}_2^{\alpha_i - 1} - \mathbf{v}_1^{\alpha_i - 1})}$$

$$\alpha_i = (2 + 2Z_i) / (2 + Z_i) = \frac{5}{3}$$
 for $Z_i = 4$

$$v_{1} = v_{//_{1}} / v_{te} \approx 3.5 \text{ (Quasi-linear ELD limit)}$$

$$v_{2} = v_{//_{2}} / v_{te} \approx 24.8 \text{ for } (c / v_{//_{2}}) = n_{//_{acc}} \approx 1.3 \& T_{e} \approx 0.5 \text{ keV}$$

$$v_{te} = (T_{e} / m_{e})^{1/2}$$

$$\Rightarrow \frac{T_{\perp}}{T_{e}} \approx 95 \implies T_{\perp} \sim 47 \text{ keV consistent with precession drift}$$
resonance for the highest frequency n=3 modes

Fokker-Planck Simulations Show Large $T_{e\perp}$ from Pitch Angle Scattering

Alcator

C-Mod

 \succ Fokker-Planck simulations show a large T_e from pitch angle scattering

These trapped electrons can then provide the necessary drive for TAEs since $\gamma v_{\perp}/c = 0.3 \Rightarrow T_{e\perp} = 47$ keV matches the highest freq n=3 modes

Conclusions

Vicator

;-Mod ■

- > 300 400 kW of LHCD in the early current rise drives a substantial fast electron tail with $E_{x ray} > 30$ keV that excites fast electron driven Toroidal Alfvén Eigenmodes
- These TAEs have resonant q values from ~ 11 to 5.5 and burst at low order rational q values and provide a measure of the q profile evolution
- A toroidal field scan from 4.5 to 6.3 T shows that the mode frequencies scale as the TAE frequency
- The observed factor of two range in TAE frequencies may be explained by a hollow density profile and a reversed shear q profile that crosses a given rational q surface three times

- → These modes require $P_{LH} > 0.2$ MW and the mode amplitude increases with increasing P_{LH}
- ➤ The modes were strongest at 90° phasing $(n_{\parallel} \approx 2.3)$, weaker at 60° phasing $(n_{\parallel} \approx 1.5)$, and disappeared at 120° phasing $(n_{\parallel} \approx 3)$ as expected from LH wave velocity and absorption effects
- The measured hard x ray photon average energy is comparable to the fast electron energy required to satisfy the precession drift resonance condition for fast electron driven TAEs
- ➤ Analytic and numerical calculations of the T_{e⊥} from pitch angle scattering are consistent with the electron energy required to match the precession drift resonance condition for deeply trapped electrons

JA Snipes, 21st Transport Task Force Workshop, Boulder, CO 26 March 2008