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Lower Hybrid Generates Fast Electron  /awator
Driven Modes in the Current Rise Chod

» Very early injection of LHCD starting at 0.02 s excites rapidly bursting
high frequency modes driven by fast electrons in the current rise

» The frequencies of these modes are in the range of 100 kHz — 700 kHz
with increasing frequency as g falls indicating Alfvén eigenmodes

» AE drive depends on the fast particle energy not the mass so that fast
electrons can also drive AEs unstable

» Fast electron driven TAEs were first observed on Compass-D with
combined ECH+LHCD [1]

» Lower frequency fast electron driven fishbone-like bursting modes
have also been observed driven with ECCD on DII1-D [2] and with
LHCD on FTU [3]

[1] M Valovic, et al, 2000 Nucl Fus 40 1569
[2] K-L Wong, et al, 2000 Phys Rev Lett 85 996
[3] F Zonca, et al, 2007 Nucl Fus 47 1588



__Lower Hybrid Heating in the Current Rise 750
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» Hard x rays + ECE indicate LH
generates a fast electron tail

» High frequency TAEs are
observed from 0.02 to 0.035 s

» Large non-thermal ECE signals
Indicate effective pitch angle
scattering from v to v, [4]

» LHCD also drives very low
frequency m=3, 2, n=1 tearing
modes that can cause
disruptions

[4] Fuchs, et al, 1985 Phys Fluids 28 3619



_Low Elongation Outer Wall Limited Plasma &80
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Mode Frequencies Increase with Time as g Evolves )fgﬁzkg
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» Mode frequency increases with time often with three frequency bands

» Time between bursts also increases with time as n, and q profiles evolve
26 March 2008
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Fast Electron Modes Rotate in the Electron Direction Alcator
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» Toroidal mode numbers are inthe rangeof n~1-6

» Modes rotate In the electron direction (counter-1)



Mode Frequencies Scale as TAEs for Intermediate q Values Alcator
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» Mode frequencies fit well f-,- = v, /(4nqR) for intermediate g values and
bursts occur at ~ integer and half-integer q values from 11 down to 5.5

» Three frequency bands scale as n=2, 3, 4 but cannot have f, = 100 kHz!
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Mode Frequencies Scale as TAEs for Intermediate q Values Alcator
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» Now suppose f, Is small and each frequency band has its own q value.
Then the mode frequencies fit well to q values between ~11 and 3.5

» Why are there simultaneous bursts at these particular g values?



Resonant g Values Track Edge q Time Evolution %~

)Cj%od

Edge q and TAE g Time Evolution

2001 ] > Early TAEs have
[ ' resonant g from 11 to 3.5
15 ; before 0.035 s
o 10} » Resonant g values track
| _ edge g time evolution and
5t Q1ag ; Indicate resonances are
5 ; ] deep inside the plasma
0.02 0.03 0.04 0.05 » Lower g surfaces may not
Time (s) have yet entered the

plasma

J A Snipes, 215t Transport Task Force Workshop, Boulder, CO 26 March 2008



Mode Frequency Proportional to TAE Frequency  Alcator
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» Minimum mode frequencies scale approximately as frg at Qggqe/1.5

» Maximum mode frequencies scale approximately as f1ag at gggq/3.0



Electron Density (10%° m™)

Hollow Density and Peaked Temperature Profile  ‘Alcator
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» Measured profiles from Thomson scattering show a very hollow
electron density and peaked electron temperature profile

» A hollow density profile could account for nearly a factor of two
change in TAE frequency across the profile at the same resonant g
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Hollow Density and Peaked Temperature Profile g
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» Assuming a reversed shear g profile the measured hollow density
profile can provide nearly a factor of two change in TAE frequency

» The measured TAE frequencies can be modeled with this q profile
within the errors on the density profile

» The three freq bands then correspond to the same rational q surface



Frequency of Bursts Decreases with Decreasing Edge q =~ ‘Alcator
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» Frequency of bursts decreases with decreasing edge g

» There are fewer low order rational surfaces at lower g



Mode Amplitude Increases with LHCD Power Alcator
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» Mode amplitude increases with increasing P,
» Modes are absent with P, ,, = 0.2 MW

» Indicates fast electron drive increases with lower hybrid power
as expected
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Eigenmode Stability Depends Strongly on LHCD Phase Alcator
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» Modes are strongest at 90° phasing (n, ~ 2.3)

» Some modes are visible at 60 ° phasing (n, ~ 1.55)

» Modes are absent at 120 ° phasing (n, ~ 3.09) where current drive is
weak and the electron distribution function is less energetic
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Average Hard X Ray Photon Energy Exceeds 30 keV ‘Alcator
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» Radially viewing hard x ray camera shows a broad profile with
significant counts out to at least 80 keV photon energy

» Average hard x ray photon energy increases from 20 — 35 keV during the
high frequency modes
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High Frequency Mode Satisfies Resonance Condition Alcator

C-Mod

» Precession drift resonance condition for deeply trapped particles
maximizes the fast electron drive when o = w4 so that [4]
T, (keV) ~2.52 f_ 4(KHZ) B(T) r, R,/(nq)

» Using r,=0.1 m, the n=2 frequencies in the shot of interest give T,
comparable to the measured hard x ray photon energy vs time

» This resonance condition may  Precession Drift Resonance and <E> Hard X Ray
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away despite continued LH
heating, since lower g requires ;
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[4] F Zonca et al, Nucl Fus 47 (2007) 1588



A High Perpendicular Temperature Results from Pitch Angle ’fé’_c :g"
Scattering of the Parallel LHRF-Generated Electron Tall

» From Fuchs et al., Physics of Fluids 28, 3619 (1985) Eg. (37):

TJ_ ~ (ai ']-)(VZ[i e Vfi Jrl)V12_0[i B V12 (Vz B Vl)(Ofi2 _1)

T 2(v,—v))(a? ~1)— (e +LvE™ (v — v )

a.=(2+22)1(2+2)=% forZ =4

v, =V, 1V, ~3.5 (Quasi-linear ELD limit)
V,=V, Iv,~248for(c/v,)=n, ~13&T,~0.5keV

v, = (T, /m)"

acc

=
= —~9 3 T, ~ 47 keV consistent with precession drift
T :
° resonance for the highest frequency n=3 modes



Fokker-Planck Simulations Show Large T,, from
Pitch Angle Scattering Alcgtor
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» Fokker-Planck simulations show a large T,, from pitch angle scattering

» These trapped electrons can then provide the necessary drive for TAES
sinceyv,/c=0.3=>» T,, =47 keV matches the highest freq n=3 modes



Conclusions Aldator
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» 300 — 400 kW of LHCD in the early current rise drives a
substantial fast electron tail with E, ..., > 30 keV that excites fast

X ray

electron driven Toroidal Alfvén Eigenmodes

» These TAEs have resonant q values from ~ 11 to 5.5 and burst at
low order rational g values and provide a measure of the g profile
evolution

» A toroidal field scan from 4.5 to 6.3 T shows that the mode
frequencies scale as the TAE frequency

» The observed factor of two range in TAE frequencies may be
explained by a hollow density profile and a reversed shear g
profile that crosses a given rational g surface three times
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Further Conclusions /&gﬁ"
» These modes require P, , > 0.2 MW and the mode amplitude
Increases with increasing P,

» The modes were strongest at 90° phasing (n, ~ 2.3), weaker at
60° phasing (n, ~ 1.5), and disappeared at 120° phasing (n, ~ 3)
as expected from LH wave velocity and absorption effects

» The measured hard x ray photon average energy Is comparable to
the fast electron energy required to satisfy the precession drift
resonance condition for fast electron driven TAEs

» Analytic and numerical calculations of the T, from pitch angle
scattering are consistent with the electron energy required to
match the precession drift resonance condition for deeply trapped
electrons
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